Project description:Tsetse flies (Glossina spp.) are major vectors of African trypanosomes, causing either Human or Animal African Trypanosomiasis (HAT or AAT). Several approaches are developed to control the disease among which the anti-vector Sterile Insect Technique. Another approach in the frame of anti-vector strategies could consist in controlling the fly’s vector competence which needs identifying factors (genes, proteins, biological pathways, …) involved in this process. The present work aims to verify whether protein candidates identified under experimental controlled conditions on insectary-reared tsetse flies have their counterpart in field-collected flies. Glossina palpalis palpalis flies naturally infected with Trypanosoma congolense were sampled in two HAT/AAT foci in Southern Cameroon. After dissection, the proteome from guts of parasite-infected flies were compared to that from uninfected flies in order to identify quantitative and/or qualitative changes associated to infection. A total of 3291 proteins were identified of which 1818 could be quantified. The comparative analysis allowed identifying 175 proteins with significant decreased abundance in infected as compared to uninfected flies, while 61 proteins displayed increased abundance. Among the former are RNA binding proteins, kinases, actin, ribosomal proteins, endocytosis proteins, oxido-reductases, as well as proteins that are unusually found such as tsetse salivary proteins (Tsal) or Yolk proteins. Among the proteins with increased abundance are fructose-1,6-biphosphatase, serine proteases, membrane trafficking proteins, death proteins (or apoptosis proteins), and SERPINs (inhibitor of serine proteases, enzymes considered as trypanosome virulence factors) that displayed highest increased abundance. Sodalis, Wiggleswothia and Wolbachia proteins are strongly under-represented, particularly when compared to data from similar experimentation conducted under controlled conditions on T. brucei gambiense infected (or uninfected) G. palpalis gambiensis insectary reared flies. Comparing the overall recorded data, 364 proteins identified in gut extracts from field flies were shown to have a homologue in insectary flies. Discrepancies between the two studies may arise from differences in the species of studied flies and trypanosomes as well as in differences in environmental conditions in which the two experiments were carried out. Finally, the present study together with former proteomic and transcriptomic studies on the secretome of trypanosomes, on the gut extracts from insectary reared and on field collected tsetse flies, provide a pool of data and information on which to draw in order to perform further investigations on, for example, mammal host immunization or on fly vector competence modification via para-transgenic approaches.
Project description:Transmission of Trypanosoma brucei by tsetse flies involves the deposition of the infective quiescent metacyclic stage into the mammalian skin at the site of the fly’s bite. In the skin, the metacyclic parasites reactivate and differentiate into proliferative trypanosomes before colonizing the host's blood and tissues. We have generated an advanced human skin equivalent and used tsetse flies to naturally infect the artificial skin with trypanosomes. We have detailed the chronological order of the parasites' development in the skin and found a rapid activation and differentiation of the tsetse-transmitted cell cycle‑arrested metacyclic trypanosomes to proliferative parasites. Single-parasite transcriptomics documented the biological events during differentiation and host invasion at five different time points. After the establishment of a proliferative trypanosome population in the skin, the parasites entered a reversible quiescence program characterized by slow replication and a strongly reduced metabolism. We termed these quiescent trypanosomes skin tissue forms (STF), which may play an important role in maintaining the trypanosome infection in aparasitemic, asymptomatic individuals.
2021-05-30 | GSE174198 | GEO
Project description:Analysis of bacterial microbiome in wild tsetse flies
| PRJNA556771 | ENA
Project description:Transcriptome of tsetse fly bacteriomes within Kenyan flies
| PRJNA387614 | ENA
Project description:Bacterial communities associated with natural populations of tsetse flies
| PRJNA345319 | ENA
Project description:Metatranscriptome of teneral tsetse flies of varying vector competence
| PRJNA668823 | ENA
Project description:Blood meal analysis of tsetse flies by Next-generation sequencing
Project description:Purpose: The aim was, in the frame of an anti-vector strategy, to use such genes to control Human and/or animal trypanosomiasis. The present objective was to verify whether field tsetse fly gene expression was modified in response to natural infection with trypanosomes as it was when insectary-raised flies were experimentally infected. Method: mRNA from 10 samples of Glossina palpalis (5 non-infected and 5 infected by Trypanosoma congolense s.l.) were sequenced on a high-output flow cell (400M clusters) using the NextSeq® 500/550 High Output v2 150 cycles kit (Illumina), in paired-end 75/75nt mode. The sequenced reads that passed quality filter were mapped onto the genome with the local alignment algorithm subread-align (Liao et al., 2013). Differential analysis was done with the SARTools R package (Varet et al., 2016), which runs separately DESeq2 (Love et al., 2014) and egdeR (Robinson et al., 2010). We identified orthologs between Glossina and Drosophila based on the identification of bidirectional best hits (BBH) using blastp (Altschul et al., 1997), and then made functional enrichment and pathway mapping of these DEGs. Results: Using the RNA-seq approach, differentially expressed genes (DEGs) have been identified in infected versus non-infected tsetse flies, including down-regulated genes and up-regulated genes. Some of the genes, whether down- or up-regulated, were very highly differentially expressed. Down-regulated genes were mainly involved in transcription/translation processes, while up-regulated encoded genes governing amino acid and nucleotide biosynthesis pathways. The data on the molecular cross-talk between the host and the parasite (and the fly microbiome that is always present) recorded when using an experimental biological model have its counterpart in field flies which in turn validates the use of experimental host/parasite couples. Conclusion: This study is the first evaluation of transcriptomic mechanisms related to infection in field tsetse flies. This opens up prospects for vector-based control strategies, and more precisely the blocking of transmission.