Project description:In an experimental evolutionary set-up, we transferred a genetically diverse strain of the spider mite Tetranychus urticae from its common host bean to tomato where replicated populations were allowed to adapt. By sampling the transcriptomes of non-adapted and adaptes mites feeding on bean and tomato, we identified gene-expression changes in the spider mite affiliated with tomato adaptation. Transcriptional analysis revealed that both constitutive gene-expression levels as well as the transcriptional plasticity of genes were affected. Specifically, tomato adaptation resulted in a large set of constitutively down-regulated genes of unknown function in adapted mites compared to non-adapted mites. Additionally, upon tomato exposure, adapted mites exhibited an increased transcriptional plasticity of genes coding for detoxifying enzymes and xenobiotic transporters. Remarkably, adapted mites further exhibited a differential effect on host plant physiology compared to non-adapted mites. Adapted mites induced a greater chlorotic area on tomato leaves and triggered attenuated induced responses relative to those induced by non-adapted mites.
Project description:We generated 38-bp Illumina reads from messenger RNA libraries from mites transferred from their preferred laboratory host, bean (Phaseolus vulgaris cv. California Red Kidney), to one of three hosts: bean, Arabidopsis thaliana (Bla-2 accession) and the tomato (Solanum lycopersicum; genotype Heinz 1706). Larvae were carefully collected from bean plants and transferred to the treatment plant. Mites were reared on these plants for ~24 hours, after which mites were collected for mRNA library preparation. Samples were a mix of males and females. The goal of the study was to identify genes that may underlie the ability of mites to be herbivores on different host plants. Mites were transferred from host bean plants to two non-preferred hosts (Arabidopsis thaliana and tomato). RNA was then collected, and RNA-seq was performed on the Illumina platform. For each of three host plants, three biological replicates were generated.
Project description:We generated 38-bp Illumina reads from messenger RNA libraries from mites transferred from their preferred laboratory host, bean (Phaseolus vulgaris cv. California Red Kidney), to one of three hosts: bean, Arabidopsis thaliana (Bla-2 accession) and the tomato (Solanum lycopersicum; genotype Heinz 1706). Larvae were carefully collected from bean plants and transferred to the treatment plant. Mites were reared on these plants for ~24 hours, after which mites were collected for mRNA library preparation. Samples were a mix of males and females. The goal of the study was to identify genes that may underlie the ability of mites to be herbivores on different host plants.
Project description:We sequenced messenger RNA from mixed stages of the two-spotted spider mite (Tetranychus urticae) reared on bean (Phaseolus vulgaris cv California Red Kidney; the laboratory host plant for mites) and two Arabidopsis thaliana accessions which were considered to either be susceptible (Kondara) or resistant (Bla-2) to mite feeding. This pilot experiment was conducted to assess gene expression differences of mites grown on sensitive versus resistant Arabidopsis accessions, as well as differences in mites feeding on different host species. The expression data was used for gene model validation of genes predicted by EuGene in the spider mite genome and to assess gene expression levels. Examination of gene expression of spider mites reared on beans and two Arabidopsis accessions (Kondara and Bla-2).
Project description:We sequenced messenger RNA from mixed stages of the two-spotted spider mite (Tetranychus urticae) reared on bean (Phaseolus vulgaris cv California Red Kidney; the laboratory host plant for mites) and two Arabidopsis thaliana accessions which were considered to either be susceptible (Kondara) or resistant (Bla-2) to mite feeding. This pilot experiment was conducted to assess gene expression differences of mites grown on sensitive versus resistant Arabidopsis accessions, as well as differences in mites feeding on different host species. The expression data was used for gene model validation of genes predicted by EuGene in the spider mite genome and to assess gene expression levels.
Project description:250 adult T. urticae females from the London strain (grown on acyanogenic P. vulgaris cv. Prelude bean plants) were transferred to cyanogenic P. lunatus cv. 8078 bean plants. Thirty-five generations after the host transfer, total RNA was extracted from mites growing on both bean species (London and London-CYANO strain) and used in in a genome-wide gene expression microarray (Sureprint G3 microarray, Agilent) experiment to assess significantly differentially expressed genes (FC M-bM-^IM-% 2 and FDR-corrected p-value < 0.05) between mites grown on P. vulgaris (cv. Prelude) bean plants (London strain) and mites grown for 35 generations on P. lunatus (cv. 8078) bean plants (London-CYANO strain). 4 replicates for one comparison: mites of the London strain grown on P. lunatus for 35 generations (London-CYANO) compared to mites of the London strain grown on P. vulgaris bean plants (London)