Project description:In order to more accurately discover the cause of drug resistance in tumor treatment, and to provide a new basis for precise treatment.
Therefore, based on the umbrella theory of precision medicine, we carried out this single-center, prospective, and observational study to include patients with liver metastases from colorectal cancer. By combining genome, transcriptome, and proteomic sequencing data, we established a basis for colorectal cancer liver Transfer the multi-omics data of the sample, describe the reason for the resistance of the first-line treatment, and search for new therapeutic targets.
Project description:The primary objective of this prospective observational study is to characterize the gut and oral microbiome as well as the whole blood transcriptome in gastrointestinal cancer patients and correlate these findings with cancer type, treatment efficacy and toxicity. Participants will be recruited from existing clinical sites only, no additional clinical sites are needed.
Project description:The intestinal epithelium is replaced weekly by non-quiescent stem cells with kinetics that rely on a rapid loss of stemness and choice for secretory or absorptive lineage differentiation. To determine how the cellular transcriptome and proteome changes during these transitions, we developed a new cell sorting method to purify stem cells, secretory and absorptive progenitor cells, and mature, differentiated cells. Transcriptome analyses revealed that as stem cells transition to the progenitor stage, alternative mRNA splicing and polyadenylation dominate changes in the transcriptome. In contrast, as progenitors differentiate into mature cell types, alterations in gene expression and mRNA levels drive the changes. RNA processing targets mRNAs encoding regulators of cell cycle, RNA regulators, cell adhesion, SUMOylation, and Wnt and Notch signaling. Additionally, carrier-assisted mass spectrometry of sorted cell populations detected >2,800 proteins and revealed RNA:protein patterns of abundance and correlation. Paired together, these data highlight new potentials for autocrine and feedback regulation and provide new insights into cell state transitions in the crypt.