Project description:Cd, Cr, Cu, Pb, and Zn concentrations were measured in oysters (C. gigas), plankton, and seawater during spring, summer, and autumn in Liaodong Bay (Bohai Sea, China) to elucidate the effects of season, region, and oyster size on metal bioaccumulation in oysters. Metal concentrations were quantified via atomic absorption spectrophotometry. Our study determined that metal concentrations in oysters, plankton, and seawater were the highest in summer, whereas the lowest levels occurred in autumn. Regarding oyster sizes, the highest Pb levels occurred in C3-sized oysters (> 5-cm length), whereas the highest Cd, Cr, Cu, and Zn levels occurred in C2 (3-5-cm length) oysters. In contrast, the lowest Cu and Pb levels occurred in C1 (< 3-cm length) oysters, whereas the lowest mean Cd, Cr, and Zn concentrations were observed in C3 oysters. Significant differences in trace metal concentrations in the three sample types were observed in all sampling sites.
Project description:Protease-producing bacteria are widespread in ocean sediments and play important roles in degrading sedimentary nitrogenous organic materials. However, the diversity of the bacteria and the proteases involved in such processes remain largely unknown especially for communities in enclosed sea bays. Here, we investigated the diversity of the extracellular protease-producing bacteria and their protease types in Laizhou Bay. A total of 121 bacterial isolates were obtained from sediment samples in 7 sites and their protease types were characterized. The abundance of cultivable protease-producing bacteria was about 104 CFU g-1 of sediment. Phylogenetic analysis based on 16S rRNA gene sequences suggest that the isolates belonged to 17 genera from 4 phyla including Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes, and mainly dominated by the genera Pseudoalteromonas (40.5%), Bacillus (36.3%), and Photobacterium (5.8%). The diversity and community structure varied among different sampling sites but no significant correlation was observed with soil sediment's characteristics. Enzyme activity and inhibition tests further revealed that all isolates secreted proteases that were inhibited by serine and/or metalloprotease inhibitors, and a smaller proportion was inhibited by inhibitors of cysteine and/or aspartic proteases. Furthermore, all isolates effectively degraded casein and/or gelatin with only a few that could hydrolyze elastin, suggesting that the bacteria were producing different kinds of serine proteases or metalloproteases. This study provided novel insights on the community structure of cultivable protease-producing bacteria near the Yellow River estuary of an enclosed sea bay.