Project description:The transcriptomes of H. polymorpha grown on xylose were compared with those of glucose-grown cells under both aerobic and microaerobic conditions The transcriptomes of H. polymorpha grown on xylose were compared with those of glucose-grown cells under both aerobic and microaerobic conditions
Project description:The transcriptomes of H. polymorpha grown on xylose were compared with those of glucose-grown cells under both aerobic and microaerobic conditions
Project description:Low oxygen tensions are often encountered in flooded soils of rice fields by root-associated, strictly respiratory, beta proteobacterium, Azoarcus sp. BH72 which fixes nitrogen only under microaerobic condition. In this study, genome wide oligonucleotide microarrays were used compare the global transcription profile of Azoarcus sp. BH72 under microaerobic condition with cells grown under aerobic condition, both with ammonia as sole nitrogen source. The outcome of this study will provide a better insight about the establishment of this endophyte in the microaerobic environment, probably prevailing inside of the rice root niche . RNA from cells grown under microaerobic condition with 0.3% oxygen (experiment) and aerobic condition with 21% oxygen (control), respectively was used for two color whole genome microarray approach.
Project description:We demonstrate the feasibility of total RNA-SIP in experiments where microbes from a hydrocarbon-contaminated aquifer were studied in microcosms with 13C-labelled-toluene to understand their adaptation to the simultaneous availability of low levels of different electron acceptors. SIP successfully resolved the involvement of microaerobic vs. aerobic and anaerobic populations. Under microoxic, nitrate-amended conditions hydrocarbon degradation was actually stimulated, but transcripts of denitrification showed no signs of 13C-labelling. The expression of distinct oxygenase-based catabolic pathways for toluene degradation was clearly apparent in 13C-labelled mRNA. We discuss how these direct insights into the gene expression and adaptation mechanisms within complex degrader communities can guide more integrated approaches in monitoring and restoration of contaminated sites.