Project description:Prostate cancer is the second most occurring cancer in men worldwide, and with the advances made with screening for prostate-specific antigen, it has been prone to early diagnosis and over-treatment. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. The model includes pathways such as androgen receptor, MAPK, Wnt, NFkB, PI3K/AKT, MAPK, mTOR, SHH, the cell cycle, the epithelial-mesenchymal transition (EMT), apoptosis and DNA damage pathways. The final model accounts for 133 nodes and 449 edges. We applied a methodology to personalise this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients, using TCGA and GDSC datasets.
Project description:Clinical management of prostate cancer remains a significant challenge due to the lack of available tests for guiding treatment decisions. The blood Prostate-Specific Antigen (PSA) test has facilitated early detection and intervention of prostate cancer. However, blood PSA levels are less effective in distinguishing aggressive from indolent prostate cancers and other benign prostatic diseases. Thus, the development of novel approaches specific for prostate cancer that can differentiate aggressive from indolent disease remains an urgent medical need. In the current study, we evaluated urine specimens from prostate cancer patients instead of serum using liquid chromatography-tandem mass spectrometry (LC-MS/MS), with the aim of identifying effective prostate cancer biomarkers. Glycoproteins from urine samples of prostate cancer patients with different Gleason scores were characterized via solid phase extraction of N-linked glycosite-containing peptides and LC-MS/MS. In total, 2923 unique glycosite-containing peptides were identified. Comparison of urine-based glycoproteins with those identified from aggressive and non-aggressive prostate cancer tissues as well as sera from prostate cancer patients revealed that the majority of aggressive prostate cancer-associated glycoproteins were more readily detected in patient urine than serum samples. Our data collectively indicate that urine provides a highly reliable source for biomarker testing in patients with aggressive prostate cancer.
Project description:Prostate cancer is the Prostate cancer is the most prevalent cancer in men. However, the majority of prostate cancers diagnosed today are indolent with 14% of patients diagnosed with lethal prostate cancer. It is of great importance to determine the molecular features that are involved in the aggressiveness of prostate cancers. To this end, we found that through SWATH-MS proteomics analyses of 108 well-preserved frozen prostate tissues of various disease states, tmost prevalent cancer in men. However, the majority of prostate cancers diagnosed today are indolent with 14% of patients diagnosed with lethal prostate cancer. It is of great importance to determine the molecular features that are involved in the aggressiveness of prostate cancers. To this end, we deployed SWATH-MS proteomics analyses of 108 well-preserved frozen prostate tissues of various disease states.
Project description:MicroRNA expression levels in the lymphoblastic cells of prostate cancer patients and their healthy brothers from HPCX1 linked prostate cancer families were analyzed to trace variants that might alter miRNA expression and explain partly an inherited genetic predisposion to prostate cancer.
Project description:To identify prostate cancer-specific gene expression, we have employed whole cDNA microarray expression profiling between benign prostate hypertrophy and prostate cancer. We performed needle biopsy of patients with prostatic hyperplasia who were suspected as prostate cancer for minor high level (4.0-10 ng/ml). As a result of needle biopsy, we used the tissue of patients with prostatic hyperplasia that prostate cancer was denied for cDNA microarry analysis. Furthermore, we also performed needle biopsy of patients that prostate cancer should have been strongly suspected because of high PSA. Needle biopsies were performed after we obtained informed consent from patients with the document approved from the Graduate School of Medical Science, Kanazawa University. Gene expression profile was determied in each of normal prostate samples and prostate cancer samples. Then the profiles were compared between normal prostate samples and prostate cancer samples.
Project description:WHSC1 catalyzes dimethylation of lysine 36 on histone H3, which is profoundly upregulated in prostate cancer patients especially in metastatic PCa patients. We conduct ChIP sequencing in chromatin landscape induced by WHSC1 depleted in prostate cancer cell PC3 to understand the H3K36me2 genome-wide alterations.
Project description:Through digital rectal examinations and routine prostate-specific antigen (PSA) screening, early treatment of prostate cancer has become possible. However, prostate cancer is a complex and heterogeneous disease. In many patients, cancer cells can invade adjacent tissues and metastasize to other tissues, resulting in difficultly to cure. For the treatment of primary and metastatic prostate cancer, a significant problem is how to improve its survival time. Here, we collect 7 untreated primary and metastatic prostate cancer and 6 benign prostate hyperplasia samples under ultrasound guidance by experienced radiologists using the 18-G needle. Through mass spectrometry, we have completely depicted the protein atlas of primary and metastatic prostate cancer and benign prostate hyperplasia. Through bioinformatics analysis, experimental verification, and combined clinical data, we discover that the ribosome signaling pathway promotes the progression of prostate cancer and is associated with a poor prognosis. Among them, Mrpl1, Mrpl4, and Mrpl16 may be biomolecular markers for diagnosis and prognosis.