Project description:Connecting genes to phenotypic traits in bacteria is often challenging because of a lack of environmental cues in laboratory settings. However, laboratory-based model ecosystems offer a means to better account for natural conditions compared to standard planktonic cultures, aiding in the linking of genotypes and phenotypes. Here, we present a simple, cost-effective, laboratory-based model ecosystem to study aerobic methane-oxidizing bacteria (methanotrophs). This system, referred to as the gradient syringe, is made by inoculating bacteria into semi-solid agarose held within a disposable syringe. Empty space at one end of the syringe is flushed with methane gas, while the other end is open to the atmosphere through a sterile filter. We show this system replicates the methane-oxygen counter gradient typically found in the natural soil environment of methanotrophs. Culturing the methanotroph Methylomonas sp. strain LW13 in this system produced a distinct horizontal band at the intersection of the counter gradient, which we discovered was due not to increased cell growth at this location but instead to an increased amount of extracellular polymeric substances (EPS). We also discovered that different methanotrophic taxa formed EPS bands with distinct locations and morphologies when grown in the methane-oxygen counter gradient. By comparing transcriptomic data from LW13 growing within and surrounding this EPS band, we identified genes implicated in cell growth and EPS formation within the gradient syringe, and validated the involvement of these genes with knockout strains. This work highlights the use of a laboratory-based model ecosystem that more closely mimics the natural environment to uncover methanotroph phenotypes missing from standard planktonic cultures, and link these phenotypes their genetic determinants.
2023-10-05 | GSE243827 | GEO
Project description:Ulva-associated bacteria (MAGs) across salinity gradient
Project description:Background: Probiotic-like bacteria treatment has been described to be associated with gut microbiota modifications. Goal: To decipher if the effects of the tested probiotic-like bacteria are due to the bacteria itself or due to the effects of the bacteria on the gut microbiota. Methodology: In this study, gut microbiota has been analyzed from feces samples of subjects with metabolic syndrome and treated with one of the 2 tested probiotic-like bacteria or with the placebo during 3months.
Project description:Morphogen signalling forms an activity gradient and instructs cell identities in a signalling strength-dependent manner to pattern developing tissues. However, developing tissues also undergo dynamic morphogenesis, which may produce cells with unfit morphogen signalling and consequent noisy morphogen gradient. Here we show that a cell competition-related system corrects such noisy morphogen gradients. Zebrafish imaging analyses of the Wnt/β-catenin signalling gradient, which acts as a morphogen to establish embryonic anterior-posterior patterning, revealed that unfit cells with abnormal Wnt/β-catenin activity spontaneously appear and produce noise in the gradient. Communication between unfit and neighbouring fit cells via cadherin proteins stimulates apoptosis of the unfit cells by activating Smad signalling and reactive oxygen species production. This unfit cell elimination is required for proper Wnt/β-catenin gradient formation and consequent anterior-posterior patterning. Because this gradient controls patterning not only in the embryo but also in adult tissues, this system may support tissue robustness and disease prevention.
Project description:Morphogen signalling forms an activity gradient and instructs cell identities in a signalling strength-dependent manner to pattern developing tissues. However, developing tissues also undergo dynamic morphogenesis, which may produce cells with unfit morphogen signalling and consequent noisy morphogen gradient. Here we show that a cell competition-related system corrects such noisy morphogen gradients. Zebrafish imaging analyses of the Wnt/β-catenin signalling gradient, which acts as a morphogen to establish embryonic anterior-posterior patterning, revealed that unfit cells with abnormal Wnt/β-catenin activity spontaneously appear and produce noise in the gradient. Communication between unfit and neighbouring fit cells via cadherin proteins stimulates apoptosis of the unfit cells by activating Smad signalling and reactive oxygen species production. This unfit cell elimination is required for proper Wnt/β-catenin gradient formation and consequent anterior-posterior patterning. Because this gradient controls patterning not only in the embryo but also in adult tissues, this system may support tissue robustness and disease prevention.
Project description:New methods for the global identification of RNA-protein interactions have led to greater recognition of the abundance and importance of RNA-binding proteins (RBPs) in bacteria. Here, we expand this tool kit by developing SEC-seq, a method based on a similar concept as the established Grad-seq approach. In Grad-seq, cellular RNA and protein complexes of a bacterium of interest are separated in a glycerol gradient, followed by high-throughput RNA-sequencing and mass spectrometry analyses of individual gradient fractions. New RNA-protein complexes are predicted based on the similarity of their elution profiles. In SEC-seq, we have replaced the glycerol gradient with separation by size exclusion chromatography, which shortens operation times and offers greater potential for automation. Applying SEC-seq to Escherichia coli, we find that the method provides a higher resolution than Grad-seq in the lower molecular weight range up to ~500 kDa. This is illustrated by the ability of SEC-seq to resolve two distinct, but similarly sized complexes of the global translational repressor CsrA with either of its antagonistic small RNAs, CsrB and CsrC. We also characterized changes in the SEC-seq profiles of the small RNA MicA upon deletion of its RNA chaperones Hfq and ProQ and investigated the redistribution of these two proteins upon RNase treatment. Overall, we demonstrate that SEC-seq is a tractable and reproducible method for the global profiling of bacterial RNA-protein complexes that offers the potential to discover yet-unrecognized associations between bacterial RNAs and proteins.