Project description:Aeromonas are ubiquitous inhabitants of both natural and anthropogenic aquatic ecosystems. Occasionally, Aeromonas also grows in drinking water distribution systems, which is highly undesired due to the pathogenicity of some members of this genus. The growth of Aeromonas in such highly oligotrophic environments is currently poorly understood. Possible nutrient sources are biopolymers. For example, chitin is the structural component of the exoskeleton of insects, some invertebrates and the cell walls of fungi which makes it one of the most abundant carbon and nitrogen sources in nature. In this study we demonstrate the ability of two Aeromonas strains, Aeromonas bestiarum and Aeromonas rivuli to efficiently grow on chitin. The secreted proteins confirm the presence of the functional hydrolytic enzymes that enable the efficient degradation and utilization of this abundant biopolymer. Further quantitative cellular proteomic study unravels the remarkable reorganization of the Aeromonas metabolism when switching to chitin as sole carbon and nitrogen source. This proves that Aeromonas is not only chitinolytic but also a chitinotrophic microorganism.
Project description:Although drinking water disinfection has proved to be an effective strategy to eliminate most waterborne pathogens, bacterial pathogens can still show disinfection tolerance in drinking water distribution systems (DWDSs), posing a great threat to drinking water safety and human health. Despite stress signals such as starvation and low temperature were reported to increase disinfection tolerance of E. coli, it is unclear whether the stress-induced disinfection tolerance was conserved in different bacterial species.