Project description:Floral development of Argyranthemum frutescens
| PRJNA793363 | ENA
Project description:Transcriptomics and metabolomics analyses provide insights into the pathogenic mechanism of the rice false smut pathogen Ustilaginoidea virens
| PRJNA974935 | ENA
Project description:Transcriptomics analyses provide insights into salt-stress response in germination and seeding stages of wheat
| PRJNA853768 | ENA
Project description:Integrated Metabolome and Transcriptome Profiling Provide Insights into Cold Responses in Rapeseed (Brassica napus L.) Genotypes with Contrasting Cold Stress Sensitivity
Project description:We performed high-throughput profiling of gene expression in rat hippocampus in response to chronic unpredictable mild stress (CUMS) and albiflorin treatment. Total 415 differentially expressed genes (DEGs) were identified in rat hippocampus in response to albiflorin treatment compared with CUMS rats treated with saline (CUMS-Sal). We conducted the integrated metabolomics and transcriptomics analysis and found the correction of 16 biochemical pathways by albiflorin such as sphingolipids, phospholipids, tryptophan metabolism, fatty acid oxidation, and purine and pyrimidine metabolism. Our study provided deep insights into the understanding of the molecular mechanisms underlying the rapid antidepressant actions of albiflorin.
Project description:Drought is one of the major constraints for crop productivity across the globe. Chickpea (Cicer arietinum L.) is mainly cultivated in the arid and semi-arid tropical regions under rain-fed conditions and drought stress is one of the major constraints, which causes up to 50% yield losses annually. In this study, transcriptomics, proteomics and metabolomics datasets from root tissues of contrasting drought responsive chickpea genotypes, ICC 4958 (drought-tolerant), JG 11 (drought-tolerant); an introgression line, JG 11+ (drought-tolerant) and ICC 1882, (drought-sensitive) under control and stress conditions were generated. The integrated analysis of these multi-omics data revealed complex molecular mechanism underlying drought stress response in chickpea. Transcriptomics integrated with proteomics data identified enhancement of hub proteins encoding isoflavone 4’-O-methyltransferase (Ca_06356), UDP-D-glucose/UDP-D-Galactose 4-epimerase (Ca_15037) and delta-1-pyrroline-5-carboxylate synthesis (Ca_24241). These proteins highlighted the involvement of critical pathways such as antibiotic biosynthesis, galactose metabolism and isoflavonoid biosynthesis in activating drought stress response mechanism. Subsequently, integration of metabolomics data identified six key metabolites (fructose, galactose, glucose, myo-inositol, galactinol and raffinose) that showed enhanced correlation with galactose metabolism. Further, integration of root -omics data together with genomic dataset of the “QTL-hotspot” region harbouring several drought tolerance related traits revealed involvement of candidate genes encoding aldo keto reductase family oxidoreductase (Ca_04551) and leucine rich repeat extensin 2 (Ca_04564). These results from integrated multi-omics approach provided a comprehensive understanding and new insights into the drought stress response mechanism of chickpea.
Project description:We combined analysis of serum metabolomics and whole blood transcriptomics in patients with RRMS and SPMS to build an integrated network describing these different phases of MS and to help improve our understanding of the potential mechanisms driving disease progression. Transcriptomic analysis of whole blood was performed to assess differential gene expression between five patients with RRMS and eight patients with SPMS.