Project description:We report that TAR DNA binding protein 43 (TDP-43), mutations in which constitute a major risk factor for amyotrophic lateral sclerosis (ALS), inhibits L1 retrotransposition in mouse embryonic stem cells (mESCs) and preimplantation embryos. Knockdown of TDP-43 resulted in massive genomic L1 expansion and impaired cell growth in preimplantation embryos and ESCs. Functional analysis demonstrated that TDP-43 interacts with L1 open reading frame 1 protein (L1 ORF1p) to mediate genomic protection, and loss of this interaction led to de-repression of L1 retrotransposition. Our results identify TDP-43 as a guardian of the embryonic genome by protecting it from massive L1 retrotransposition.
Project description:Transposable elements (TEs) are genomic parasites that propagate within the host genome and introduce mutations. Long interspersed nuclear element-1 (LINE-1 or L1) is the major TE class, which occupies nearly 20% of the mouse genome. L1 is highly active in mammalian preimplantation embryos, posing a major threat to genome integrity, but the mechanism of stage-specific protection against L1 retrotransposition is unknown. Here, we show that TAR DNA-binding protein 43 (TDP-43), mutations in which constitute a major risk factor for amyotrophic lateral sclerosis, inhibits L1 retrotransposition in mouse embryonic stem cells (mESCs) and preimplantation embryos. Knockdown of TDP-43 resulted in massive genomic L1 expansion and impaired cell growth in preimplantation embryos and ESCs. Functional analysis demonstrated that TDP-43 interacts with L1 open reading frame 1 protein (L1 ORF1p) to mediate genomic protection, and loss of this interaction led to derepression of L1 retrotransposition. Our results identify TDP-43 as a guardian of the embryonic genome.
Project description:Loss of the nuclear RNA binding protein TAR DNA binding protein-43 (TDP-43) into cytoplasmic aggregates is the strongest correlate to neurodegeneration in amyotrophic lateral sclerosis and frontotemporal degeneration. The molecular changes associated with the loss of nuclear TDP-43 in human tissues are not entirely known. Using a novel subcellular fractionation and fluorescent activated cell sorting method to enrich for diseased neuronal nuclei without TDP-43 from post-mortem FTD-ALS human brain, we characterized the effects of TDP-43 loss on the transcriptome and chromatin accessibility. Nuclear TDP-43 loss is associated with gene expression changes that affect RNA processing, nucleocytoplasmic transport, histone processing and DNA damage. Loss of nuclear TDP-43 was also associated with chromatin decondensation around long interspersed nuclear elements (LINEs) and increased LINE1 DNA content. Moreover, loss of TDP-43 leads to increased retrotransposition that can be inhibited with antiretroviral drugs, suggesting that TDP-43 neuropathology is associated with altered chromatin structure including decondensation of LINEs.
Project description:Loss of the nuclear RNA binding protein TAR DNA binding protein-43 (TDP-43) into cytoplasmic aggregates is the strongest correlate to neurodegeneration in amyotrophic lateral sclerosis and frontotemporal degeneration. The molecular changes associated with the loss of nuclear TDP-43 in human tissues are not entirely known. Using a novel subcellular fractionation and fluorescent activated cell sorting method to enrich for diseased neuronal nuclei without TDP-43 from post-mortem FTD-ALS human brain, we characterized the effects of TDP-43 loss on the transcriptome and chromatin accessibility. Nuclear TDP-43 loss is associated with gene expression changes that affect RNA processing, nucleocytoplasmic transport, histone processing and DNA damage. Loss of nuclear TDP-43 was also associated with chromatin decondensation around long interspersed nuclear elements (LINEs) and increased LINE1 DNA content. Moreover, loss of TDP-43 leads to increased retrotransposition that can be inhibited with antiretroviral drugs, suggesting that TDP-43 neuropathology is associated with altered chromatin structure including decondensation of LINEs.
Project description:MicroRNAs (miRNAs) play important roles in a wide range of cellular processes. Aberrant regulation of miRNA genes contributes to human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a DNA/RNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs whose expression levels are regulated by TDP-43 using RNA-Seq coupled with siRNA-mediated knockdown approach. TDP-43 knocking down affected the expression of a number of miRNAs. Alterations in isomiR patterns and miRNA arm selection after TDP-43 knockdown suggest a role of TDP-43 in miRNA editing. We examined correlation of selected TDP-43 associated miRNAs and their candidate target genes in human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p expression. On the other hand, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Low expression of miR-500a-3p was associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Our experiments reveal that cancer-associated genes LIF and PAPPA may be targets of miR-500a-3p. Together with other studies, our work suggests that TDP-43-regulated miRNAs may play multi-facet roles in the pathogenesis of cancer.
Project description:MicroRNAs (miRNAs) play important roles in a wide range of cellular processes. Aberrant regulation of miRNA genes contributes to human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a DNA/RNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs whose expression levels are regulated by TDP-43 using RNA-Seq coupled with siRNA-mediated knockdown approach. TDP-43 knocking down affected the expression of a number of miRNAs. Alterations in isomiR patterns and miRNA arm selection after TDP-43 knockdown suggest a role of TDP-43 in miRNA editing. We examined correlation of selected TDP-43 associated miRNAs and their candidate target genes in human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p expression. On the other hand, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Low expression of miR-500a-3p was associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Our experiments reveal that cancer-associated genes LIF and PAPPA may be targets of miR-500a-3p. Together with other studies, our work suggests that TDP-43-regulated miRNAs may play multi-facet roles in the pathogenesis of cancer. small RNA seq in SH-SY-5Y, SNB-19 and HT22 (TDP-43 siRNA VS Control siRNA)
Project description:The aim of this study is to understand the mechanisms of TDP-43 neurotoxicity. Here, we perform a RNA-Seq analysis in TDP-43 gain-of-fucntion (GOF) , TDP-43 loss-of-function and wild-type late pupae heads (73-90 hours APF) and perform TDP-43 GOF vs wild type and TDP-43 LOF vs wild-type differential expression analysis to show that both mechanisms presents defects in ecdysone receptor (ECR)-dependeint transcriptional program switching, and strongly deregulate expression from the neuronal microtubule associated protien Map205. RNA-seq was performed in two wild-type D.melanogaster biological replicates (Canton S, w1118 ), four biological replicates for TDP-43 (LOF) with two distinct genotypes (dTDP-43Δ142/Df(2R)106,dTDP-43Δ23/Δ142 ) and two TDP-43 GOF biological replicates (act5c>dTDP-43 ).
Project description:The aim of this study is to understand the mechanisms of TDP-43 neurotoxicity. Here, we perform a RNA-Seq analysis in TDP-43 gain-of-fucntion (GOF) , TDP-43 loss-of-function and wild-type late pupae heads (73-90 hours APF) and perform TDP-43 GOF vs wild type and TDP-43 LOF vs wild-type differential expression analysis to show that both mechanisms presents defects in ecdysone receptor (ECR)-dependeint transcriptional program switching, and strongly deregulate expression from the neuronal microtubule associated protien Map205.
Project description:TDP-43 is an important RNA binding protein. To better understand its binding targets in human neurons, we performed TDP-43 iCLIP on SHSY5Y cells.
Project description:TDP-43 proteinopathies including frontotemporal lobar dementia (FTLD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders characterized by aggregation and mislocalization of the nucleic-acid binding protein TDP-43 and subsequent neuronal dysfunction. Here, we developed an endogenous model of sporadic TDP-43 proteinopathy based on the principle that disease-associated TDP-43 acetylation at lysine 145 (K145) alters TDP-43 conformation, impairs its RNA-binding capacity, and induces downstream mis-regulation of target genes. Expression of aberrant acetylation-mimic TDP-43K145Q resulted in stress-induced phase-separated nuclear TDP-43 foci formation and loss-of-TDP-43-function in mouse primary neurons and human induced pluripotent stem cell (iPSC)-derived neurons. Aged mice harboring the single TDP-43K145Q mutation recapitulate several key hallmarks of neurodegenerative proteinopathies, including progressive TDP-43 phosphorylation and insolubility, cytoplasmic mis-localization, widespread transcriptomic and splicing alterations, and cognitive dysfunction. Our study supports a model in which aberrant TDP-43 acetylation drives neuronal dysfunction and cognitive decline through alternative splicing and transcription of genes important in synaptic plasticity and apoptosis, providing a new paradigm to interrogate FTLD disease mechanisms and uncover disease-modifying therapeutics.