Project description:TransplantLines is designed as a single-center, prospective cohort study and biobank including all different types of solid organ transplant recipients as well as living organ donors. In the TransplantLines gut microbiome study the gut microbiome of solid organ transplant recipients is characterized and linked to clinical phenotypes. This batch contains the cross-sectional data from liver transplant recipients and longitudinal data from renal and liver transplant recipients.
Project description:TransplantLines is designed as a single-center, prospective cohort study and biobank including all different types of solid organ transplant recipients as well as living organ donors. In the TransplantLines gut microbiome study the gut microbiome of solid organ transplant recipients is characterized and linked to clinical phenotypes. This batch contains the cross-sectional data from renal transplant recipients is.
Project description:Tacrolimus (TAC) is an immunosuppressant widely used in kidney transplantation. TAC displays considerable inter-individual variability in pharmacokinetics (PK). Genetic and clinical factors play important roles in TAC PK. To define genetic factors associated with tacrolimus blood trough concentration, we performed a genome-wide association study of renal transplant samples from 251 Chinese renal transplant recipients. We identified 23 single nucleotide polymorphisms (SNPs) related to TAC PK variability. All 23 genome-wide significant SNPs (p<5E-8) were located on chromosome 7, including rs776746. These findings suggest that these SNPs may be associated with the unexlained TAC PK variability in renal transplant recipients and require further investigation.
Project description:In stable renal transplant recipients with hyperparathyroidism, the vitamin D agonist paricalcitol reduces the level of proteinuria. Animal studies have indicated possible anti-fibrotic and anti-inflammatory effects of paricalcitol. We hypothesised that early introduction of paricalcitol in de novo renal transplant recipients would reduce proteinuria and counteract development of fibrosis in the allograft.
Project description:<p>In this study, we investigated the role of the gut microbiota on the development of complications in kidney transplant recipients. We collected serial fecal specimens from 168 kidney transplant recipients within the first 3 months after transplantation. We performed 16S rRNA gene sequencing of the V4-V5 hypervariable region and examined whether the relative gut abundance of pathogenic bacteria was associated with future development of complications like bacteriuria and urinary tract infections. In a subset of samples, we performed metagenomic sequencing of stool and urine supernatant specimens to determine strain level analysis. </p>
Project description:In stable renal transplant recipients with hyperparathyroidism, the vitamin D agonist paricalcitol reduces the level of proteinuria. Animal studies have indicated possible anti-fibrotic and anti-inflammatory effects of paricalcitol. We hypothesised that early introduction of paricalcitol in de novo renal transplant recipients would reduce proteinuria and counteract development of fibrosis in the allograft. A single centre, prospective, randomized, open label trial investigating the additional effect of paricalcitol 2ug/day to standard care was performed. Participants were included 8 weeks after engraftment irrespective of PTH-level and followed for 44 weeks. Microarray analyses were performed in kidney biopsies at study end for the investigation of potential effects on gene expression profile. This dataset is part of the TransQST collection.
Project description:Cohort study of 137 renal transplant recipients and 29 non-immunosuppressed controls, looking at clinical influences upon monocytic HLA-DR density (mHLA-DRd) and associated clinical outcomes (namely, malignancy development)
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.