Project description:Previous studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma. We used microarray analysis to evaulate the effect of ischemia and tissue procurement conditions on the gene expression changes in renal cell carcinoma
Project description:Previous studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma. We used microarray analysis to evaulate the effect of ischemia and tissue procurement conditions on the gene expression changes in renal cell carcinoma Ten renal tumors were resected without renal hilar clamping from 10 patients with renal clear cell carcinoma. Immediately after tumor resection, a piece of tumor was snap frozen. Remaining tumor samples were stored at 4C, 22C and 37C and frozen at 5, 30, 60, 120, and 240 minutes. Histopathologic evaluation was performed on all tissue samples, and only those with greater than 80% tumor were selected for further analysis. RNA integrity was confirmed by electropherograms and quantitated using RIN index. Gene expression study was done on Affymetrix HG 133 Plus 2.0 Platform. Altered gene expression was assessed by paired, two-sample t-test between the zero time point and aliquots from various conditions obtained from the same tumor.
Project description:Transposase-accessible chromatin by sequencing (ATAC-seq) has emerged as an advantageous technique to assess chromatin accessibility owing to the robustness of "tagmentation" process and a relatively faster library preparation. A comprehensive ATAC-seq protocol from Drosophila brain tissue is currently unavailable. Here, we have provided a detailed protocol of ATAC-seq assay from Drosophila brain tissue. Starting from dissection and transposition to amplification of libraries has been elaborated. Furthermore, a robust ATAC-seq analysis pipeline has been presented. The protocol can be easily adapted for other soft tissues.