Project description:A phylogenetic analysis of 19 sibling taxa in the Vertigo gouldii group was conducted on 73 individuals sampled across North America using DNA sequence data of the mitochondrial genes cytochrome oxidase subunit 1 (CO1) and 16S ribosomal RNA (16S), and the internal transcribed spacer-2 of the nuclear ribosomal RNA (ITS-2) gene. The results of these analyses were found incongruent with previous taxonomic concepts used to define the V. gouldii group and its composite taxa that were based entirely on conchological features. The mtDNA sequence data suggest that some previous members of the traditional V. gouldii group may be more closely related to V. modesta. They also suggest that V. gouldii may itself consist of seven species-level branches spread across two deeply rooted clades. Revision of geographical distributions on the basis of these analyses suggests that these Vertigo species may commonly possess continental-sized ranges in spite of their minute size and limited active dispersal ability. High levels of sympatry within the group are also confirmed, with up to four species being known to co-occur within single microsites. These data also suggest that rates of diversification have been non-constant. Assuming a 1%/my rate of base pair substitution, a 10-fold diversification pulse is indicated from 6.7-7.0 myBP, which would be co-incident with known mid-late Miocene global climate changes.
Project description:Southwest Australia (SWA) is a global biodiversity hotspot and a centre of diversity and endemism for the Australo-Papuan myobatrachid frogs. Myobatrachus gouldii (the turtle frog) has a highly derived morphology associated with its forward burrowing behaviour, largely subterranean habit, and unusual mode of reproduction. Its sister genera Metacrinia and Arenophryne have restricted distributions in Western Australia with significant phylogeographic structure, leading to the recent description of a new species in the latter. In contrast, Myobatrachus is distributed widely throughout SWA over multiple climatic zones, but little is known of its population structure, geographic variation in morphology, or reproduction. We generated molecular and morphological data to test for genetic and morphological variation, and to assess whether substrate specialisation in this species may have led to phylogeographic structuring similar to that of other plant and animal taxa in SWA. We assembled sequence data for one mitochondrial and four nuclear DNA loci (3628 base pairs) for 42 turtle frogs sampled throughout their range. Likelihood phylogenetic analyses revealed shallow phylogeographic structure in the mtDNA locus (up to 3.3% genetic distance) and little variation in three of the four nDNA loci. The mtDNA haplotype network suggests five geographically allopatric groups, with no shared haplotypes between regions. These geographic patterns are congruent with several other SWA species, with genetic groups restricted to major hydrological divisions, the Swan Coastal Plain, and the Darling Scarp. The geographically structured genetic groups showed no evidence of significant morphological differentiation (242 individuals), and there was little sexual size dimorphism, but subtle differences in reproductive traits suggest more opportunistic breeding in lower rainfall zones. Call data were compared to sister genera Metacrinia and Arenophryne and found to be highly conservative across the three genera. Like many taxa in SWA, topographic variation and Plio-Pleistocene arid fluctuations likely were historic drivers of diversification in M. gouldii.