Project description:Strigolactones (SL) are a new class of plant hormones with a broad range of roles in symbiosis, germination and developmental regulation. The well-characterized signaling pathway for SL involves the canonical signaling component MAX2. Here we identified a novel, MAX2-independent SL signaling mechanism, which initiates in mitochondria, signals to the nucleus and regulates root development. By a forward genetic approach, we identified the SL-insensitive pig1 mutant, which altered the kinetic properties of the mitochondrial pyruvate dehydrogenase complex. SL has an unknown target in mitochondria, where it uncouples respiration. This leads to metabolic aberrations, mitochondria-to-nucleus retrograde signaling upregulating transcription of mitochondrial dysfunction genes and downregulating auxin-regulated genes. SL-triggered mitochondrial uncoupling is communicated to the nucleus via cleavage and translocation of the ER-localized transcription factor ANAC017. These observations establish a novel mechanism for SL signaling emanating from mitochondria and regulating development.
Project description:The study critically evaluate the results of 16S targeted amplicon sequencing performed on the total DNA collected from healthy donors’ blood samples in the light of specific negative controls.
Project description:Flag (FL) and second leaves (SL) in rice show differential aging patterns during monocarpic senescence. Coordination of aging programs in the top leaves is important for effective grain-filling. However, molecular bases for differential aging programs in the top leaves have not been systematically explored in rice. Here, we performed mRNA-sequencing of FL and SL at six time points during the grain-filling period. mRNA expression data revealed 6,365 genes showing aging-dependent expression changes in FL and/or SL. Of them, while 3047 genes showed shared aging-dependent expression patterns between FL and SL, 3058 genes showed differential expression patterns, which were classified into 5 major groups (G1-5) based on their differential expression patterns. Of the groups, G3 representing amino acid (AA) transport showed consistent differential age-dependent expression patterns in independent samples, whereas the other groups showed inconsistent differential expression patterns. Moreover, of AA transporters (AATs) in G3, long-distance AATs showed invariant differential age-dependent expression patterns after panicle removal, consistent to panicle removal-invariant differential nitrogen contents between FL and SL, known to be associated with protein concentration in grains. Our results suggest that long-distance AA transport is an invariant core transcriptional program of differential aging in rice top leaves for nitrogen remobilization during grain-filling.
Project description:To compare the impact of CRISPR-egineered R175 TP53 mutant variants in HCT116 and H460 cells, mutations at the amino acid position 175 were generated systematically by CRISP/Cas9 editing. Here, genomic amplicon regions covering the TP53 Exons 5 were sequenced via targeted sequencing.
Project description:Root exudates are composed of primary and secondary metabolites known to modulate the rhizosphere microbiota. Glucosinolates are defense compounds present in the Brassicaceae family capable of deterring pathogens, herbivores and biotic stressors in the phyllosphere. In addition, traces of glucosinolates and their hydrolyzed byproducts have been found in the soil, suggesting that these secondary metabolites could play a role in the modulation and establishment of the rhizosphere microbial community associated with this family. We used Arabidopsis thaliana mutant lines with disruptions in the indole glucosinolate pathway, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 16S rRNA amplicon sequencing to evaluate how disrupting this pathway affects the root exudate profile of Arabidopsis thaliana, and in turn, impacts the rhizosphere microbial community. Chemical analysis of the root exudates from the wild type Columbia (Col-0), a mutant plant line overexpressing the MYB transcription factor ATR1 (atr1D) which increases glucosinolate production, and the loss-of-function cyp79B2cyp79B3 double mutant line with low levels of glucosinolates confirmed that alterations to the indole glucosinolate biosynthetic pathway shifts the root exudate profile of the plant. We observed changes in the relative abundance of exuded metabolites. Moreover, 16S rRNA amplicon sequencing results provided evidence that the rhizobacterial communities associated with the plant lines used were directly impacted in diversity and community composition. This work provides further information on the involvement of secondary metabolites and their role in modulating the rhizobacterial community. Root metabolites dictate the presence of different bacterial species, including plant growth-promoting rhizobacteria. Our results suggest that alterations in the indole glucosinolate pathway cause disruptions beyond the endogenous levels of the plant, significantly changing the abundance and presence of different metabolites in the root exudates of the plants as well as the microbial rhizosphere community.