Project description:Influenza infection is substantially worsened by the onset of secondary pneumonia caused by bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). The bidirectional interaction between the influenza-injured lung microenvironment and MRSA is poorly understood. By conditioning MRSA ex vivo in bronchoalveolar lavage fluid collected from mice at various timepoints of influenza infection, we found that the influenza-injured lung microenvironment dynamically induces MRSA to increase cytotoxin expression while decreasing metabolic pathways. LukAB, a SaeRS two-component system dependent cytotoxin, is particularly important to the severity of post-influenza MRSA pneumonia. LukAB’s activity is likely shaped by the post-influenza lung microenvironment, as LukAB binds to (and is activated by) heparan sulfate (HS) oligosaccharide sequences shed from the epithelial glycocalyx after influenza. Our findings indicate that post-influenza MRSA pneumonia is shaped by bidirectional host-pathogen interactions: host injury triggers changes in bacterial expression of toxins, the activity of which may be shaped by host-derived HS fragments.
Project description:Metatranscriptomic analysis identifies a state of pathogen dominance and suppressed pulmonary immune signaling in critically ill COVID-19 patients with secondary bacterial pneumonia.
Project description:A leading cause of morbidity and mortality during influenza infection is the development of a secondary bacterial pneumonia, which is appropriately treated with antibiotics. In the absence of a bacterial superinfection, prescribing antibiotics is not indicated but has nevertheless become a common clinical practice for those presenting with a respiratory viral illness. We found that antibiotic use during an antecedent influenza infection impaired the lung innate immunologic defenses toward a secondary challenge with methicillin-resistantStaphylococcus aureus(MRSA). The antibiotics perturbed the gut microbiome causing a fungal dysbiosis that drives an increase in lung eosinophils. We also demonstrate eosinophils, through the release of major basic protein, impair macrophage ability to clear MRSA. Moreover, we provide clinical evidence that eosinophils positively correlate with antibiotic use and worsened outcomes in patients hospitalized for viral infections. Altogether, our work establishes a counterproductive effect of antibiotic treatment during influenza infection that have negative immunologic consequences in the lungs thereby increasing the risk of developing a secondary bacterial infection.
Project description:Introduction: Diagnosis of severe influenza pneumonia remains challenging because of the lack of correlation between presence of influenza virus and patient’s clinical status. We conducted gene expression profiling in the whole blood of critically ill patients to identify a gene signature that would allow clinicians to distinguish influenza infection from other causes of severe respiratory failure (e.g. bacterial pneumonia, non-infective systemic inflammatory response syndrome). Methods: Whole blood samples were collected from critically ill individuals and assayed on Illumina HT-12 gene expression beadarrays. Differentially expressed genes were determined by linear mixed model analysis and over-represented biological pathways determined using GeneGo MetaCore. Results: The gene expression profile of H1N1 influenza A pneumonia was distinctly different from bacterial pneumonia and systemic inflammatory response syndrome. The influenza gene expression profile is characterized by up-regulation of genes from cell cycle regulation, apoptosis and DNA-damage response pathways. In contrast, no distinctive gene-expression signature was found in patients with bacterial pneumonia or systemic inflammatory response syndrome. The gene expression profile of influenza infection persisted through five days of follow-up. Furthermore, in patients with primary H1N1 influenza A infection who subsequently developed bacterial co-infection, the influenza gene-expression signature remained unaltered, despite the presence of a super-imposed bacterial infection. Conclusions: The whole blood expression profiling data indicates that the host response to influenza pneumonia is distinctly different from that caused by bacterial pathogens. This information may speed up identification of the cause of infection in patients presenting with severe respiratory failure, allowing appropriate patient care to be undertaken more rapidly. Daily PAXgene samples for up to 5 days for; influenza A pneumonia patients (n=8), bacterial pneumonia patients (n=16), mixed bacterial and influenza A pneumonia patients (n=3), systemic inflammatory response patients (SIRS, n=13). Days 1 and 5 PAXgene samples for healthy control individuals
Project description:Introduction: Diagnosis of severe influenza pneumonia remains challenging because of the lack of correlation between presence of influenza virus and patient’s clinical status. We conducted gene expression profiling in the whole blood of critically ill patients to identify a gene signature that would allow clinicians to distinguish influenza infection from other causes of severe respiratory failure (e.g. bacterial pneumonia, non-infective systemic inflammatory response syndrome). Methods: Whole blood samples were collected from critically ill individuals and assayed on Illumina HT-12 gene expression beadarrays. Differentially expressed genes were determined by linear mixed model analysis and over-represented biological pathways determined using GeneGo MetaCore. Results: The gene expression profile of H1N1 influenza A pneumonia was distinctly different from bacterial pneumonia and systemic inflammatory response syndrome. The influenza gene expression profile is characterized by up-regulation of genes from cell cycle regulation, apoptosis and DNA-damage response pathways. In contrast, no distinctive gene-expression signature was found in patients with bacterial pneumonia or systemic inflammatory response syndrome. The gene expression profile of influenza infection persisted through five days of follow-up. Furthermore, in patients with primary H1N1 influenza A infection who subsequently developed bacterial co-infection, the influenza gene-expression signature remained unaltered, despite the presence of a super-imposed bacterial infection. Conclusions: The whole blood expression profiling data indicates that the host response to influenza pneumonia is distinctly different from that caused by bacterial pathogens. This information may speed up identification of the cause of infection in patients presenting with severe respiratory failure, allowing appropriate patient care to be undertaken more rapidly.
Project description:Secondary bacterial infections (‘superinfection’) are a major reason for excessive mortality and hospitalizations during influenza virus infections. Here we present a longitudinal study of gene-expression changes in murine lungs during superinfection, with an initial influenza A virus (IAV) infection and a subsequent S. pneumonia (SP) infection. In addition to the well characterized impairment of the innate immune response, we identified superinfection-specific alterations in endothelial functions, including rapid downregulation in angiogenic activity and vascular regulators. Superinfection-specific alterations were also evident in analysis of cellular states related to the host’s immune resistance against pathogens. We found that only a few hours after secondary bacterial challenge, superinfected mice manifested an excessive induction of immune resistance, and in addition, there was a substantial rewiring of the resistance program: interferon-regulated genes are switched from positive to negative correlations with resistance, whereas genes of fatty-acid metabolism are switched from negative to positive correlations with resistance. Thus, the transcriptional resistance state is reprogrammed toward repressed interferon signaling and induced fatty acid metabolism. Our findings suggest new insights into the remodeling of the host defense upon superinfection, providing promising targets for future therapeutic interventions.
Project description:Longitudinal Gene expression profiling of whole blood from critically ill influenza and bacterial pneumonia patients. In addition before vs 7 days post influenza vaccination volunteer samples are assayed. 3 groups of samples. First is bacterial pneumonia patients with 6 subjects sampled for up to 5 days. Second group is severe influenza infection with 4 subjects sampled for up to 5 days. Third group is influenza vaccination with 18 subjects sampled before and 7 days post vaccination.
Project description:During bacterial pneumonia, alveolar epithelial cells are critical for maintaining gas exchange and providing antimicrobial as well as pro-immune properties. We previously demonstrated that leukemia inhibitory factor (LIF), an IL-6 family cytokine, is produced by type II alveolar epithelial cells (ATII) and is critical for tissue protection during bacterial pneumonia. However, the target cells and mechanisms of LIF-mediated protection remain unknown. Here, we demonstrate that antibody-induced LIF blockade remodels the lung epithelial transcriptome in association with increased apoptosis. Based on these data, we performed pneumonia studies using a novel mouse model in which LIFR (the unique receptor for LIF) is absent in lung epithelium. While LIFR was detected on the surface of epithelial cells, its absence only minimally contributed to tissue protection during pneumonia. Single-cell RNA-sequencing (scRNAseq) was conducted to identify adult murine lung cell types most prominently expressing LIFR, revealing endothelial cells, mesenchymal cells, and ATIIs as major sources of LIFR. Sequencing data indicated that ATII cells were significantly impacted as a result of pneumonia, with additional differences observed in response to LIF neutralization, including but not limited to gene programs related to cell death, injury, and inflammation. Overall, our data suggest that LIF signaling on epithelial cells alters responses in this cell type during pneumonia. However, our results also suggest separate and perhaps more prominent roles of LIFR in other cell types, such as endothelial cells or mesenchymal cells, which provide grounds for future investigation.
Project description:The reprogramming of alveolar macropahges (AM) in mice after resolution of primary bacterial or viral pneumonia induced poor phagocytic capacity for several weeks. The tyrosine kinase-inhibitory receptor, SIRP-α, played a critical role in the establishment of the microenvironment that induced tolerogenic training.