Project description:Malignancy can be suppressed by the immune system. However, the classes of immunosurveillance responses and their mode of tumor sensing remain incompletely understood. Here, we show that while clear cell renal cell carcinoma (ccRCC) was infiltrated by exhaustion-phenotype CD8+ T cells which negatively correlated with patient prognosis, chromophobe RCC had abundant infiltration of granzyme A-expressing intraepithelial type 1 innate lymphoid cells (ILC1s) that positively associated with patient survival. Interleukin-15 (IL-15) promoted ILC1 granzyme A expression and cytotoxicity, and IL-15 expression in chRCC tumor tissue positively tracked with the ILC1 response. An ILC1 gene signature also predicted survival of a subset of breast cancer patients in association with IL-15 expression. Notably, ILC1s directly interacted with cancer cells, and IL-15 produced by cancer cells supported the expansion and anti-tumor function of ILC1s in a murine breast cancer model. Thus, ILC1 sensing of cancer cell IL-15 defines an immunosurveillance mechanism of epithelial malignancies.
Project description:Interleukin-2 (IL-2) and Janus kinases (JAKs) regulate transcriptional programs and protein synthesis to control the differentiation of effector CD8+ cytotoxic T cells (CTL). Using high-resolution mass spectrometry, we have generated an in-depth characterisation of how IL-2 and JAKs configure the CTL proteome to control CTL function. We found that IL-2-JAK1/3 signaling selectively regulated the abundance of a key subset of proteins influencing the accumulation of critical cytokines and effector molecules in T cells. Moreover, IL-2 controlled the concentration of proteins that support core metabolic processes essential for cellular fitness. One fundamental insight was the dominant role for IL-2 in controlling how effector T cells respond to their microenvironment. IL-2-JAK1/3 signaling pathways thus controlled the abundance of nutrient transporters, nutrient sensors and critical oxygen sensing molecules. The data provide key insights of how IL-2 controls T cell function and highlight signaling mechanisms and transcription factors that link oxygen sensing to transcriptional control of CD8+ T cell differentiation.
Project description:Malignancies represent the third leading cause of post-transplant mortality worldwide. The main challenge for transplant physicians is a timely diagnosis of this condition. The aim of the study was to identify a soluble diagnostic marker for monitoring the development of post-transplant malignancies. This is a multicentre, observational, perspective, case-control study. We enrolled 47 patients with post-transplant solid neoplasia. As a control group we employed 106 transplant recipients without a history of neoplasia and matched them with cases for the main demographic and clinical features. We investigated the transcriptomic profiles of peripheral blood mononuclear cells from kidney graft recipients with and without post-transplant malignancies enrolled in two of the participating centres, randomly selected from the whole study population. Microarray results were confirmed by quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) in the remaining patients from the same transplant centres and validated in a further independent group enrolled in two different transplant centres. We identified 535 differentially expressed genes comparing patients with and without post-transplant malignancies (fold change ≥2.5; false discovery rate <5%). The cancer pathway was closely related to gene expression data, and one of the most down-regulated genes in this pathway was interleukin-27 (IL-27), a cytokine regulating anti-tumour immunity. Quantitative PCR and ELISA confirmed the microarray data. Interestingly, IL-27 plasma levels were able to discriminate patients with post-transplant neoplasia with a specificity of 80% and a sensitivity of 81%. This observation was confirmed in an independent set of patients from two different transplant centres. Our data suggest that IL-27 may represent a potential immunological marker for the timely identification of post-transplant neoplasia.
Project description:T cells that encounter cultured ocular pigment epithelial cells in vitro are inhibited from undergoing T cell receptor-triggered activation. Because retinal pigment epithelial (RPE) cells are able to suppress T-cell activation, we studied whether RPE cells could suppress cytokine production by activated T helper (Th) cells. In this study we showed that primary cultured RPE cells greatly suppressed activation of bystander CD4+ T cells in vitro, especially the cytokine production by the target T helper cells (Th1 cells, Th2 cells, Th17 cells, but not Th3 cells). Cultured RPE cells and RPE-supernatants significantly suppressed IL-17 producing CD4+ T cells, and RPE cells fully suppressed polarized Th17 cell lines that induced by recombinant proteins, IL-6 and TGFb2. Moreover, RPE cells failed to suppress IL-17 producing T cells in the presence of rIL-6. In addition, Th17 cells exposed to RPE were suppressed via TGFb, which produce RPE cells. These results indicate that retinal PE cells have immunosuppressive capacity in order to inhibit Th17-type effector T cells. Thus, ocular resident cells play a role in establishing immune regulation in the eye. Retinal pigment epithelium suppresses Th17 cells
Project description:Pathologic activation of the Toll-like receptor (TLR) pathway underlies various human disorders such as autoimmune diseases, chronic inflammatory diseases and lymphoid malignancies. Current therapy of these diseases relies on immunosuppressive or chemotherapeutic agents, but more effective therapeutics tailored to disease-causing mechanisms are needed. Pivotal to TLR signaling is the IL-1 receptor-associated kinase 4 (IRAK4), which is recruited to TLRs by the adaptor protein MyD88. Recruitment of IRAK kinases to MyD88, triggers the formation of a signaling competent myddosome complex, which underlies the pathogenesis of many immuno-inflammatory disorders, suggesting that IRAK4 inhibitors might be useful in the treatment of these diseases. Gain-of-function MYD88 mutations activate IRAK4 in several mature B cell malignancies, including activated B-cell-like diffuse large B cell lymphoma (ABC DLBCL). Development of selective IRAK4 inhibitors has been confounded by the challenging structure of the IRAK4 catalytic domain. Using structure-based drug design methodologies, we identified potent and selective IRAK4 inhibitors. These small molecules suppress LPS-induced TNFalpha production in vitro and in vivo, and are efficacious in mouse models of collagen-induced arthritis and MyD88-dependent inflammatory gout. Human ABC DLBCL cell lines that harbor the activating, oncogenic MyD88 L265P mutation are killed by IRAK4 inhibitors, both in vitro and in mouse xenograft models. IRAK4 inhibitors synergize with the BTK inhibitor ibrutinib, with the Syk inhibitor PRT062607, and with the Bcl-2 inhibitor ABT-199 in killing ABC DLBCL cells, suggesting new therapeutic strategies for this refractory cancer. Four ABC DLBCL cell lines (OCI-Ly10, TMD8, HBL1 and OCI-Ly3), were treated with either ND-2158 or the structurally related negative control compound ND-1659 for 6, 12, 24 or 36 h in culture. Gene expression profiling was performed using two-color human Agilent 4x44K gene expression arrays comparing signal from control compound-treated (ND-1659) control cells (Cy3), to cells treated with ND-2158 for the indicated times (Cy5).
Project description:A hallmark of PD-1/L1 blockade is long-term, sustained remission of metastatic disease. How the immune system coordinates the destruction of macro- and micro-metastases following checkpoint blockade, however, remains unclear. Here, we show that tumor-expressed PD-L1 (tPD-L1) enhanced metastasis in a mechanism distinct from and independent of its role in primary tumor growth. This difference in metastatic growth was mediated by cytotoxic T lymphocytes (CTLs), however, tPD-L1 did not promote effector CTL exhaustion or suppress lytic activity in vivo. Instead, single cell RNA sequencing revealed that tPD-L1 engaged macrophage-expressed PD-1 to antagonize type I interferon production and signaling, creating an immunologically ‘cold’ microenvironment. Loss of tPD-L1 eliminated metastases by driving interferon-mediated sensitization of tumor cells to CTL lysis and CTL recruitment.
Project description:Pathologic activation of the Toll-like receptor (TLR) pathway underlies various human disorders such as autoimmune diseases, chronic inflammatory diseases and lymphoid malignancies. Current therapy of these diseases relies on immunosuppressive or chemotherapeutic agents, but more effective therapeutics tailored to disease-causing mechanisms are needed. Pivotal to TLR signaling is the IL-1 receptor-associated kinase 4 (IRAK4), which is recruited to TLRs by the adaptor protein MyD88. Recruitment of IRAK kinases to MyD88, triggers the formation of a signaling competent myddosome complex, which underlies the pathogenesis of many immuno-inflammatory disorders, suggesting that IRAK4 inhibitors might be useful in the treatment of these diseases. Gain-of-function MYD88 mutations activate IRAK4 in several mature B cell malignancies, including activated B-cell-like diffuse large B cell lymphoma (ABC DLBCL). Development of selective IRAK4 inhibitors has been confounded by the challenging structure of the IRAK4 catalytic domain. Using structure-based drug design methodologies, we identified potent and selective IRAK4 inhibitors. These small molecules suppress LPS-induced TNFalpha production in vitro and in vivo, and are efficacious in mouse models of collagen-induced arthritis and MyD88-dependent inflammatory gout. Human ABC DLBCL cell lines that harbor the activating, oncogenic MyD88 L265P mutation are killed by IRAK4 inhibitors, both in vitro and in mouse xenograft models. IRAK4 inhibitors synergize with the BTK inhibitor ibrutinib, with the Syk inhibitor PRT062607, and with the Bcl-2 inhibitor ABT-199 in killing ABC DLBCL cells, suggesting new therapeutic strategies for this refractory cancer.