Project description:Comparison of gene expression between shoots of root-wounded seedlings and shoots of control seedlings in Arabidopsis. We identified wounding-induced early (30 min) and late (360 min) root to shoot responsive genes (RtS).
Project description:The goal of this study was to perform RNA-seq expression analysis on Solanum lycopersicum cv. M82 X S. pennellii introgression lines, deriving expression Quantitative Trait Loci which were analyzed together with pre-existing genomic and phenotypic data to define genes and regulatory pathways controlling tomato root development and observed natural variation. We completed the RNAseq expression profiling analysis and developed a tool to display this information graphically in collaboration with Nicholas Provart at the University of Toronto: http://bar.utoronto.ca/efp_tomato/cgi-bin/efpWeb.cgi?dataSource=ILs_Root_Tip_Brady_Lab To identify candidate genes and pathways we focussed on one root growth trait, root growth angle, and identified two statistically significant genomic regions within tomato root growth angle QTL containing two candidate genes that likely control the gravitropic setpoint angle (CDC73 and PAP27), both of which are conserved between Arabidopsis and tomato, and which we tested using transgenic lines of the Arabidopsis orthologs. A possible regulatory role for suberin in root growth angle control was also identified.
Project description:Tiller angle is a key factor determining rice plant architecture, planting density, light interception, photosynthetic efficiency, disease resistance, and grain yield. The distribution of auxin and shoot gravitropism play important roles in regulating tiller angles of rice. Several tiller angle-associated genes have been cloned. However, the mechanisms underlying tiller angle control are far from clear. In this study, we isolate bta1-1, a mutant with an enlarged tiller angle throughout its life cycle. A detailed analysis reveals that BTA1 has multiple functions because several major agronomic traits, including tiller and panicle number, biomass production, secondary branch number per panicle, panicle weight, grain size, and grain weight, are increased in bta1-1 plants. Moreover, BTA1 is a positive regulator of shoot gravitropism in rice. Shoot responses to gravistimulation are disrupted in bta1-1 under both light and dark conditions. Gene cloning reveals that bta1-1 is a novel mutant allele of LA1. LA1 is able to rescue the tiller angle and shoot gravitropism defects observed in bta1-1. BTA1/LA1 is required to regulate the expression of auxin transporters and signaling factors that control shoot gravitropism and tiller angle. High-throughput mRNA sequencing is performed to elucidate the molecular and cellular functions of BTA1/LA1. The results show that BTA1/LA1 may have multiple functions in regulating nucleosome and chromatin assembly, and protein and DNA interactions. Our results provide new insight into the mechanisms whereby BTA1/LA1 controls shoot gravitropism and tiller angle in rice.
Project description:Compare gene expression profiles of Leymus negatively orthogeotropic and diageotropic meristems in a similar genetic background, identify gene expression polymorphisms specifically associated with the Leymus LG3a rhizome QTL by bulk segregate analysis, and identify other possible genes specifically involved in branch angle differences of otherwise similar negatively orthogeotropic and diageotropic meristems.
Project description:A comparison of overall gene expression profiles of Leymus negatively orthogeotropic (NOGT) and diageotropic (DGT) meristems in a similar genetic background to identify gene expression polymorphisms specifically associated with the Leymus LG3a rhizome QTL by bulk segregate analysis, and identify other possible genes specifically involved in branch angle differences of otherwise similar DGT and NOGT meristems.
Project description:Comparison of gene expression between shoots of root-wounded seedlings and shoots of control seedlings in Arabidopsis. We identified wounding-induced early (30 min) and late (360 min) root to shoot responsive genes (RtS). Two-condition experiment, shoots of root-wounded seedlings vs. shoots of control seedlings. Biological replicates: 2 control replicates, 2 treated replicates. Technical replicate: Dyeswap
Project description:Prunus persica (peach) trees carrying the ‘Pillar’ or ‘Broomy’ trait (br) have vertically oriented branches caused by loss of function mutations in a gene called TILLER ANGLE CONTROL 1 (TAC1). TAC1 encodes a protein in the IGT gene family that includes LAZY1 and DEEPER ROOTING 1 (DRO1), which regulat lateral branch and root orientations, respectively. Here, we found that some of the native TAC1 alleles in the hexaploid plum species Prunus domestica, which has a naturally more upright stature, contained a variable length trinucleotide repeat within the same exon 3 region previously found to be disrupted in pillar peach trees. RNAi silencing of TAC1 in plum resulted in trees with severely vertical branch orientations similar to those in pillar peaches but with an even narrower profile. In contrast, PpeTAC1 over-expression in plum led to trees with wider branch angles and more horizontal branch orientations. Pillar peach trees and transgenic plum lines exhibited pleiotropic phenotypes including differences in trunk and branch diameter, stem growth, and twisting branch phenotypes. Expression profiling of pillar peach trees revealed differential expression of numerous genes associated with biotic and abiotic stress, hormone responses, plastids, reactive oxygen, and secondary and cell wall metabolism. Collectively, the data provide important clues for understanding TAC1 function and show that alteration of TAC1 expression may have broad applicability to agricultural and ornamental tree industries.
Project description:* In response to gravitational stresses, angiosperm trees form tension wood in the upper sides of branches and leaning stems in which cellulose content is higher, microfibrils are typically aligned closely with the fibre axis and the fibres often have a thick inner gelatinous cell wall layer (G-layer). * Gene expression was studied in Eucalyptus nitens branches oriented at 45° using microarrays containing 4 900 xylem cDNAs, and wood fibre characteristics revealed by X-ray diffraction, chemical and histochemical methods. * Xylem fibres in tension wood (upper branch) had a low microfibril angle, contained few fibres with G-layers and had higher cellulose and decreased Klason lignin compared to lower branch wood. Expression of two closely related fasciclin-like arabinogalactan proteins and a B-tubulin was inversely correlated with microfibril angle in upper and lower xylem from branches. * Structural and chemical modifications throughout the secondary cell walls of fibres sufficient to resist tension forces in branches can occur in the absence of G-layer enriched fibres and some important genes involved in responses to gravitational stress in eucalypt xylem are identified. Keywords: tissue comparison Two nine-year-old Eucalyptus nitens trees were used as a source of biological material. RNA was isolated from xylem from the vertical main stem and from the upper and lower quarter of branches oriented at approximately 45° from vertical. For each tree, slides were hybridized with probes synthesized from vertical xylem and one or other of upper or lower branch xylem.
Project description:A whole transcriptome (RNA-seq) study of Arabidopsis shoots under iron sufficient, deficient and resupply conditions was carried out to determine the genes that are iron-regulated in the shoots.