Project description:5-Hydroxymethylcytosine (5hmC) is an important mammalian DNA epigenetic modification that has been linked to gene regulation and cancer pathogenesis. Here we explored the diagnostic potential of 5hmC in cell-free DNA (cfDNA), the circulating DNA found in human plasma which represents a noninvasive window into the health status of the body. We showed that the genome-wide 5hmC distribution in cfDNA can be reliably sequenced by chemical labeling-based 5hmC enrichment. We sequenced cell-free 5hmC from 49 patients of seven different cancer types and found distinct features that can be used for monitoring disease status and progression. Specifically, we discovered that lung cancer leads to a stage-dependent hypohydroxymethlation in cfDNA, whereas hepatocellular carcinoma (HCC) and pancreatic cancer lead to disease-specific changes in the cell-free hydroxymethylome. Our results demonstrate that cell-free 5hmC can be used not only to track the stage of cancer but also to identify tissue of origin in some solid tumors.
Project description:Interventions: Gold Standard:;Index test:
Primary outcome(s): concentration of cell-free DNA in plasma;integrity of cell-free DNA in plasma
Study Design: Diagnostic test: case-control
Project description:Background Epigenetic changes are involved in the extinction of the B-cell gene expression program of classical Hodgkin lymphoma. However, little is known regarding epigenetic similarities between classical Hodgkin lymphoma and plasma cell myeloma cells, both of which share an extinction of the gene expression program of mature B-cells. Design and methods Global histone H3 acetylation patterns were determined in cell lines derived from classical Hodgkin lymphoma, plasma cell myeloma and B-cell lymphoma by chromatin immunoprecipitation and subsequent hybridization onto promoter tiling arrays. H3K27 trimethylation was analyzed by chromatin immunoprecipitation and real-time DNA-PCR for selected genes. Epigenetic modifications were compared to gene expression data. Results B-cell characteristic genes were hypoacetylated in classical Hodgkin lymphoma and plasma cell myeloma cell lines, as demonstrated by comparison of their histone H3 acetylation patterns to those of B-cell lines. However, the number of genes jointly hyperacetylated and expressed in classical Hodgkin lymphoma and plasma cell myeloma cell lines, such as IFR4/MUM1 and RYBP, is limited. Moreover, H3K27 trimethylation for selected B-cell characteristic genes revealed that this additional epigenetic silencing is much more prevalent in classical Hodgkin lymphoma as compared to plasma cell myeloma. Conclusion Our epigenetic data support the view that classical Hodgkin lymphoma is characterized by an abortive plasma cell differentiation with a down-regulation of B-cell characteristic genes but without activation of most plasma cell typical genes.
Project description:We recruited 28 patients and sequenced samples from their FFPE tissue, full blood buffy coat and plasma cell free DNA from diagnosis and other, longitudinal time points. The cell free DNA was sequenced ultra-deeply. The IDT PanCancer panel was used for targeted enrichment. Aims: detection of primary tumor mutations in cell free DNA, overlap and difference in mutation profiles between primary tumor, metastases and cell free DNA.
| EGAS00001006813 | EGA
Project description:Plasma cell-free mRNA profiling of Vietnamese Alzheimer's patients