Project description:Global warming has shifted climate zones poleward or upward. However, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate).Soils were characterized for geochemistry, Illumina sequencing was used to determine microbial taxonomic communities and GeoChips 5.0 were used to determine microbial functional genes.
Project description:Mangrove Kandelia obovata, an important coastal shelterbelt and landscape tree, is distributed in tropical and subtropical shores and likely delimited in the latitudinal range by varying sensitivity to cold. Here, we explored the temporal variations in physiological status and transcriptome profiling of K. obovata under natural frost conditions at ~32oN, as well as the positive role of exogenous abscisic acid (ABA) in cold resistance.
2022-12-06 | GSE219193 | GEO
Project description:Prokaryotes in coastal wetland
Project description:A custom multi-species microarray was used to study gene expression in wild hornyhead turbot (Pleuronichthys verticalis), collected from polluted and clean coastal waters in Southern California and in laboratory male zebrafish (Danio rerio) following exposure to estradiol and 4-nonylphenol. A multi-gene cross species microarray was fabricated as a diagnostic tool to screen the effects of environmental chemicals in fish, for which there is minimal genomic information. The microarray measurement of gene expression in zebrafish, which are phylogenetically distant from turbot, indicates that this multi-species microarray will be useful for measuring endocrine responses in Pleuronectiformes and other fish for which there is minimal genomic sequence information.
Project description:A custom multi-species microarray was used to study gene expression in wild hornyhead turbot (Pleuronichthys verticalis), collected from polluted and clean coastal waters in Southern California and in laboratory male zebrafish (Danio rerio) following exposure to estradiol and 4-nonylphenol. A multi-gene cross species microarray was fabricated as a diagnostic tool to screen the effects of environmental chemicals in fish, for which there is minimal genomic information. The microarray measurement of gene expression in zebrafish, which are phylogenetically distant from turbot, indicates that this multi-species microarray will be useful for measuring endocrine responses in Pleuronectiformes and other fish for which there is minimal genomic sequence information.
Project description:An Autonomous Underwater Vehicle (AUV) and large volume underwater pumps were used to collect microbial biomass from offshore waters of the Sargasso Sea, from surface waters and into the deep ocean. Seawater collection was performed along a transect in the western North Atlantic Ocean beginning near Bermuda and ending off the coast of Massachusetts, capturing metabolic signatures from oligotrophic, continental margin, and productive coastal ecosystems.
Project description:Atrazine is one of the most commonly used herbicide and has been frequently detected in estuarine and offshore waters worldwide. As a photosystem Ⅱ inhibitor, atrazine may inhibit phytoplankton from fixating of CO2 and alter its carbon metabolism, which will undoubtedly have negative effect on the primary productivity and carbon sequestration capacity of coastal waters. However, the existing reports mainly focused on agriculture and freshwater ecosystems and are mostly toxicity test with high-dose of atrazine, which have little concern about the negative effects of atrazine on the carbon metabolism of phytoplankton and can’t reflect the actual toxic situation in offshore water. Diatoms are widely distributed in freshwater and oceans and contribute at least 20% of the global CO2 assimilation, which is an ideal model group to assess the ecological risk of atrazine. Here we present a comprehensive analysis of the physiological and genome-wide gene expression characteristics of the diatom P. tricornutum Pt-1 (CCMP 2561) treated with environmental dose of atrazine at different stress stages.