Project description:Dysbiosis of the gut microbiota has been linked to disease pathogenesis in type 1 diabetes (T1D), yet the functional consequences to the host of this dysbiosis is unknown. Here, we have performed a metaproteomic analysis of 103 stool samples from subjects that either had recent-onset T1D, were high-risk autoantibody positive or low-risk autoantibody negative relatives of individuals with beta cell autoimmunity or healthy individuals to identify signatures in host and microbial proteins associated with disease risk. Multivariate modelling analysis demonstrated that both human host proteins and microbial derived proteins could be used to differentiate new-onset and seropositive individuals from low-risk and healthy controls. Significant alterations were identified between subjects with T1D or islet autoimmunity versus autoantibody negative and control subjects in the prevalence of individual host proteins associated with exocrine pancreas function, inflammation and mucosal function. Data integrationIntegrative analysis combining the metaproteomic data with bacterial abundance showed that taxa that were depleted in new-onset T1D patients were positively associated with host proteins involved in maintaining function of the mucous barrier, microvilli adhesion and exocrine pancreas. These data support the notion that T1D patients have increased intestinal inflammation and decreased barrier function. They also confirmed that pancreatic exocrine dysfunction occurs in new-onset T1D patients and show for the first time that this dysfunction is present in high-risk individuals prior to disease onset. Our data has identified a unique T1D-associated signature in stool that may be useful as a means to monitor disease progression or response to therapies aimed at restoring a healthy microbiota.
Project description:Chronic inflammation and gut microbiota dysbiosis are risk factors for colorectal cancer. In clinical practice, inflammatory bowel disease (IBD) patients have a greatly increased risk of developing colitis associated colorectal cancer (CAC). However, the basis underlying the initiation of CAC remains to be explored. Systematic filtration through existing genome-wide association study (GWAS) and conditional deletion of Zfp90 in CAC mice model indicated that Zfp90 was a putative oncogene in CAC development. Strikingly, depletion of gut microbiota eliminated the tumorigenic effect of Zfp90 in CAC mice model. Moreover, fecal microbiota transplantation demonstrated Zfp90 promoted CAC depending on gut microbiota. Combining 16s rDNA sequencing in feces specimens from CAC mice model, we speculated that Prevotella copri-defined microbiota might mediate the oncogenic role of Zfp90 in the development of CAC. Mechanistic studies revealed Zfp90 accelerated CAC development through Tlr4-Pi3k-Akt-Nf-κb pathway. Our findings elucidated the crucial role of Zfp90-microbiota-Nf-κb axis in creating a tumor-promoting environment and suggested therapeutic targets for CAC prevention and treatment.