Project description:Heparin, a widely used anticoagulant, carries the risk of an antibody-mediated adverse drug reaction, heparin-induced thrombocytopenia (HIT). A subset of heparin-treated patients produces detectable levels of antibodies against complexes of heparin bound to circulating platelet factor 4 (PF4). Using a genome-wide association study (GWAS) approach, we aimed to identify genetic variants associated with anti-PF4/heparin antibodies that account for the variable antibody response seen in HIT. We performed a GWAS on anti-PF4/heparin antibody levels determined via polyclonal enzyme-linked immunosorbent assays. Our discovery cohort (n = 4237) and replication cohort (n = 807) constituted patients with European ancestry and clinical suspicion of HIT, with cases confirmed via functional assay. Genome-wide significance was considered at α = 5 × 10-8. No variants were significantly associated with anti-PF4/heparin antibody levels in the discovery cohort at a genome-wide significant level. Secondary GWAS analyses included the identification of variants with suggestive associations in the discovery cohort (α = 1 × 10-4). The top variant in both cohorts was rs1555175145 (discovery β = -0.112 [0.018], P = 2.50 × 10-5; replication β = -0.104 [0.051], P = .041). In gene set enrichment analysis, 3 gene sets reached false discovery rate-adjusted significance (q < 0.05) in both discovery and replication cohorts: "Leukocyte Transendothelial Migration," "Innate Immune Response," and "Lyase Activity." Our results indicate that genomic variation is not significantly associated with anti-PF4/heparin antibody levels. Given our power to identify variants with moderate frequencies and effect sizes, this evidence suggests genetic variation is not a primary driver of variable antibody response in heparin-treated patients with European ancestry.
Project description:Heparin-induced thrombocytopenia (HIT) is an unpredictable, potentially catastrophic adverse effect of heparin treatment resulting from an immune response to platelet factor 4 (PF4)/heparin complexes. No genome-wide evaluations have been performed to identify potential genetic influences on HIT. Here, we performed a genome-wide association study (GWAS) and candidate gene study using HIT cases and controls identified using electronic medical records (EMRs) coupled to a DNA biobank and attempted to replicate GWAS associations in an independent cohort. We subsequently investigated influences of GWAS-associated single nucleotide polymorphisms (SNPs) on PF4/heparin antibodies in non-heparin treated individuals. In a recessive model, we observed significant SNP associations (odds ratio [OR] 18.52; 95% confidence interval [CI] 6.33-54.23; p=3.18×10(-9)) with HIT near the T-Cell Death-Associated Gene 8 (TDAG8). These SNPs are in linkage disequilibrium with a missense TDAG8 SNP. TDAG8 SNPs trended toward an association with HIT in replication analysis (OR 5.71; 0.47-69.22; p=0.17), and the missense SNP was associated with PF4/heparin antibody levels and positive PF4/heparin antibodies in non-heparin treated patients (OR 3.09; 1.14-8.13; p=0.02). In the candidate gene study, SNPs at HLA-DRA were nominally associated with HIT (OR 0.25; 0.15-0.44; p=2.06×10(-6)). Further study of TDAG8 and HLA-DRA SNPs is warranted to assess their influence on the risk of developing HIT.