Project description:Periodontitis can impair the osteogenic differentiation of human periodontal mesenchymal stem cells, but the underlying molecular mechanisms are still poorly understood. Long noncoding RNAs (lncRNAs) have been demonstrated to play significant roles under both physiologic and pathological conditions. We performed comprehensive lncRNAs profiling by lncRNA microarray to identify differentially expressed long noncoding RNA expression between Periodontal ligament stem cells from healthy Periodontal tissue and periodontal ligament stem cells from inflammatory periodontal tissue. Our analysis identified 233 lncRNAs and 423 mRNAs that were differently expressed (fold change >2.0, p-value < 0.05) between the two groups of cells. The GO analysis revealed that the significantly down-regulated biological processes included multicellular organismal process, developmental process and multicellular organismal development and the significantly up-regulated biological processes included cellular process, biological regulation and response to stimulus in periodontal ligament stem cells from inflammatory periodontal tissue. The Pathway analysis revealed that the differentially expressed mRNAs may involved in Focal adhesion, ECM-receptor interaction, Bacterial invasion of epithelial cells, Long-term depression, Circadian entrainment and HIF-1 signaling pathway. Two-condition experiment, periodontal ligament stem cells from healthy periodontal tissue (hPDLSCs) vs. periodontal ligament stem cells from inflammatory periodontal tissue (pPDLSCs), Biological replicates: 3 control replicates (hPDLSCs), 3 testing replicates (pPDLSCs).
Project description:Differentially expressed long noncoding RNA expression between periodontal ligament stem cells from healthy periodontal tissue and periodontal ligament stem cells from inflammatory periodontal tissue.
Project description:Periodontitis can impair the osteogenic differentiation of human periodontal mesenchymal stem cells, but the underlying molecular mechanisms are still poorly understood. Long noncoding RNAs (lncRNAs) have been demonstrated to play significant roles under both physiologic and pathological conditions. We performed comprehensive lncRNAs profiling by lncRNA microarray to identify differentially expressed long noncoding RNA expression between Periodontal ligament stem cells from healthy Periodontal tissue and periodontal ligament stem cells from inflammatory periodontal tissue. Our analysis identified 233 lncRNAs and 423 mRNAs that were differently expressed (fold change >2.0, p-value < 0.05) between the two groups of cells. The GO analysis revealed that the significantly down-regulated biological processes included multicellular organismal process, developmental process and multicellular organismal development and the significantly up-regulated biological processes included cellular process, biological regulation and response to stimulus in periodontal ligament stem cells from inflammatory periodontal tissue. The Pathway analysis revealed that the differentially expressed mRNAs may involved in Focal adhesion, ECM-receptor interaction, Bacterial invasion of epithelial cells, Long-term depression, Circadian entrainment and HIF-1 signaling pathway.
Project description:Maresin-1 (MaR1) and Resolvin E1 (RvE1) are specialized pro-resolving lipid mediators (SPMs) that regulate inflammatory processes. We have previously demonstrated the hard and soft tissue regenerative capacity of RvE1 in an in vivo model of periodontal disease characterized by inflammatory tissue destruction. Regeneration of periodontal tissues requires a well-orchestrated processes mediated by periodontal ligament stem-cells. However, limited data are available on how SPMs can regulate the regenerative properties of human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. Thus, we measured the impact of MaR1 and RvE1 in an in vitro model of hPDLSCs after stimulation with IL-1β and TNF-α by evaluating pluripotency, migration, proliferation, cell death, periodontal ligament markers (α-smooth muscle actin, tenomodulin, and periostin), cementum-osteogenic differentiation and phosphoproteomic perturbations. The data showed that the inflammatory milieu suppresses pluripotency, proliferation and migration of hPDLSCs; MaR1 and RvE1 both restored regenerative capacity by increasing hPDLSC proliferation, accelerating wound healing/migration, and upregulating periodontal ligament markers and cementum-osteogenic differentiation. Protein phosphorylation perturbations were associated with the SPM-induced regenerative capacity of hPDLSCs. Together, these results demonstrate that MaR1 and RvE1 restore or improve the regenerative properties of highly specialized stem cells when inflammation is present and offer opportunities for direct pharmacologic treatment of lost tissue integrity.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:In this study, the effect of a storage medium (hK-HTCM) in which hair keratin was dissolved in a 1:1 mixed solution of Histidine-Tryptophan-Ketoglutarate and Culture media solution (HTCM) was evaluated on the viability and proliferation of human periodontal ligament cells. There was no difference in cytotoxicity between 0.1% and 0.25% hK-HTCM against 0% hK-HTCM and human periodontal ligament cells. Human periodontal ligament cells were cultured in 0.1% and 0.25% hK-HTCM for 48 hours, and after removing hair keratin from the culture medium, the cells resumed proliferation. When exposed to 0.25% hK-HTCM, human periodontal ligament cells showed differential expression of genes related to cell cycle and cell division regulation. On the other hand, differential expression of genes related to phosphorylation and ubiquitination related to cell cycle resumption was observed in human periodontal ligament cells after removal of 0.25% hK-HTCM. 0.25% hK-HTCM showed the ability to regulate the cell cycle of human periodontal ligament cells without showing cytotoxicity, and its potential to be used as a long-term storage medium for avulsed teeth was confirmed.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.