Project description:Anthracnose disease is caused by Colletotrichum gloeosporioides, and is common in leaves of the tea plant Camellia sinensis. MicroRNAs (miRNAs) have been known as key modulators of gene expression in defense responses; however, the role of miRNAs in tea plant during defensive responses to C. gloeosporioides remains unexplored. Six miRNA sequencing data sets and two degradome data sets were generated from C. gloeosporioides-inoculated and control tea leaves. A total of 485 conserved and 761 novel miRNAs were identified. Of those, 239 known and 369 novel miRNAs exhibited significantly differential expression under C. gloeosporioides stress. 1134 and 596 mRNAs were identified as targets of 389 and 299 novel and conserved miRNAs by degradome analysis, respectively. The expression levels of twelve miRNAs and their targets were validated by quantitative real-time PCR. The predicted targets of five interesting miRNAs were further validated through 5'RLM-RACE. Furthermore, Gene Ontology and metabolism pathway analysis revealed that most of the target genes were involved in translation, carbohydrate metabolism and signal transduction pathways. This study enriches the resources of defense-responsive miRNAs and their targets in C. sinensis, and thus, provides novel insights into the miRNA-mediated regulatory mechanisms underlying immunity responses to biotic stress in tea plant.
Project description:In order to study the differential expression of cold-tolerant variety SCZ and cold-sensitive variety YH9 during cold acclimation, we analyzed transcriptome and metabolome and found that the biosynthesis of amino acids may determine the difference of cold resistance of tea plant.
Project description:Solexa sequencing technology was used to perform high throughput sequencing of the small RNA library from the cold treatment of tea leaves. Subsequently, aligning these sequencing date with plant known miRNAs, we characterized 112 C. sinensis conserved miRNAs. In addition, 215 potential candidate miRNAs were found; among them, 131 candidates with star sequence were chosen as novel miRNAs. There are both congruously and differently regulated miRNAs, and line-specific miRNAs were identified by microarray-based hybridization in response to cold stress. The miRNA chip included 3228 miRNA probes corresponding to miRNA transcripts listed in Sanger miRBase release 19.0 and 283 novel miRNAs probes founding in tea plant. In the study presented here, two tea plant cultivars, ‘Yingshuang’ (YS, a cold-tolerant tea plant cultivar) and ‘Baiye 1’ (BY, a cold-sensitive tea plant cultivar), were kept at 4°C for 4,12, 24 h, respectively, and 28°C for as control. These samples were used to acquire expression profiles of a total of 3,511 unique genes, leading to the successful construction of supervised
Project description:Cysteine S-nitrosylation is a reversible protein post-translational modification and critically regulates the activity, localization and stability of proteins. Tea (Camellia sinensis (L.)) is one of the most thoroughly studied evergreen crop due to its broad non-alcoholic beverage and huge economic impact in the world. However, to date, little is known about the S-nitrosylome in this plant. Here, we performed a global analysis of cysteine S-nitrosylation in tea leaves. In total, 228 cysteine S-nitrosylation sites were identified in 191 proteins, representing the first extensive data on the S-nitrosylome in tea plants. These S-nitrosylated proteins were located in multiple subcellular compartments, especially in the chloroplast and cytoplasm. The analysis of functional enrichment and PPI network revealed that the S-nitrosylated proteins were mainly involved in carbon metabolism, especially in Calvin cycle and TCA cycle. These results suggested that S-nitrosylated proteins in tea leaves might play critical regulatory roles in the carbon metabolism. Overall, this study not only globally analyzed the functional annotation of cysteine S-nitrosylation in tea leaves, but also preliminarily provided the valuable information for further investigating the functions of cysteine S-nitrosylation in tea plants.
Project description:Background: Lysine crotonylation (Kcr), as a novel evolutionarily conserved type of PTM, is ubiquitous and essential in cell biology. However, its functions in tea plant, an important beverage crop, are largely unknown. Our study firstly attempted to describe Kcr proteins in tea leaves under NH4+ deficiency/resupply, and provided significant insights into exploring the physiological role of Kcr in plants for N utilization. Results: We performed the global analysis of crotonylome in tea plants under NH4+ deficiency/resupply using high-resolution LC-MS/MS coupled with highly sensitive immune-antibody. A total of 2288 kcr sites on 971 proteins were identified, of which contained in 15 types of Kcr motifs. Most of Kcr proteins were located in chloroplast and cytoplasm. 120 and 151 Kcr proteins were significantly changed at 3 hours and 3days of NH4+ resupply, respectively. Bioinformatics analysis showed that differentially expressed Kcr proteins participated in diverse biological processes such as photosynthesis, carbon fixation and amino acid metabolism, suggesting Kcr plays important roles in these processes. Interestingly, a large number of enzymes were crotonylated, and the activity and Kcr level of these enzymes changed significantly after NH4+ resupply, indicating a potential function of Kcr in the regulation of enzyme activities. Moreover, the protein-protein interaction analysis revealed that the diverse interactions of identified Kcr proteins mainly involved in photosynthesis, carbon fixation, amino acid metabolism and ribosome. Conclusions: The results suggested that lysine crotonylated proteins might play regulating roles in metabolic process in tea leaves under NH4+ deficiency/resupply. The critical regulatory roles mainly involved in diverse aspects of primary metabolic processes, especially in photosynthesis, carbon fixation and amino acid metabolism. The provided data may serve as important resources for exploring the physiological, biochemical, and genetic role of lysine crotonylation in tea plants.
Project description:In this study, we performed deep sequencing and bioinformatics analyses of tea plant leaves to identify and characterize known and novel miRNAs. A total of 26,876,261 raw reads were produced from 2 libraries. We detected 422 known miRNAs belonging to 125 families, and 68 putative novel miRNAs.