Project description:Wildlife diseases pose an ever-growing threat to global biodiversity. Understanding how wildlife pathogens are distributed in the environment and the ability of pathogens to form environmental reservoirs is critical to understanding and predicting disease dynamics within host populations. Snake fungal disease (SFD) is an emerging conservation threat to North American snake populations. The causative agent, Ophidiomyces ophidiicola (Oo), is detectable in environmentally derived soils. However, little is known about the distribution of Oo in the environment and the persistence and growth of Oo in soils. Here, we use quantitative PCR to detect Oo in soil samples collected from five snake dens. We compare the detection rates between soils collected from within underground snake hibernacula and associated, adjacent topsoil samples. Additionally, we used microcosm growth assays to assess the growth of Oo in soils and investigate whether the detection and growth of Oo are related to abiotic parameters and microbial communities of soil samples. We found that Oo is significantly more likely to be detected in hibernaculum soils compared to topsoils. We also found that Oo was capable of growth in sterile soil, but no growth occurred in soils with an active microbial community. A number of fungal genera were more abundant in soils that did not permit growth of Oo, versus those that did. Our results suggest that soils may display a high degree of both general and specific suppression of Oo in the environment. Harnessing environmental suppression presents opportunities to mitigate the impacts of SFD in wild snake populations.
Project description:Ophidiomycosis (snake fungal disease) is an infectious disease caused by the fungus Ophidiomyces ophidiicola to which all snake species appear to be susceptible. Significant variation has been observed in clinical presentation, progression of disease, and response to treatment, which may be due to genetic variation in the causative agent. Recent phylogenetic analysis based on whole-genome sequencing identified that O. ophidiicola strains from the United States formed a clade distinct from European strains, and that multiple clonal lineages of the clade are present in the United States. The purpose of this study was to design a qPCR-based genotyping assay for O. ophidiicola, then apply that assay to swab-extracted DNA samples to investigate whether the multiple O. ophidiicola clades and clonal lineages in the United States have specific geographic, taxonomic, or temporal predilections. To this end, six full genome sequences of O. ophidiicola representing different clades and clonal lineages were aligned to identify genomic areas shared between subsets of the isolates. Eleven hydrolysis-based Taqman primer-probe sets were designed to amplify selected gene segments and produce unique amplification patterns for each isolate, each with a limit of detection of 10 or fewer copies of the target sequence and an amplification efficiency of 90-110%. The qPCR-based approach was validated using samples from strains known to belong to specific clades and applied to swab-extracted O. ophidiicola DNA samples from multiple snake species, states, and years. When compared to full-genome sequencing, the qPCR-based genotyping assay assigned 75% of samples to the same major clade (Cohen's kappa = 0.360, 95% Confidence Interval = 0.154-0.567) with 67-77% sensitivity and 88-100% specificity, depending on clade/clonal lineage. Swab-extracted O. ophidiicola DNA samples from across the United States were assigned to six different clonal lineages, including four of the six established lineages and two newly defined groups, which likely represent recombinant strains of O. ophidiicola. Using multinomial logistic regression modeling to predict clade based on snake taxonomic group, state of origin, and year of collection, state was the most significant predictor of clonal lineage. Furthermore, clonal lineage was not associated with disease severity in the most intensely sampled species, the Lake Erie watersnake (Nerodia sipedon insularum). Overall, this assay represents a rapid, cost-effective genotyping method for O. ophidiicola that can be used to better understand the epidemiology of ophidiomycosis.
Project description:Ophidiomyces ophidiicola (Oo) is a fungal pathogen and the causative agent of ophidiomycosis that has affected multiple snake taxa across the United States, Europe, and Asia. Ophidiomycosis has often been referred to as an emerging infectious disease (EID); however, its status as an EID has recently come under debate. Oo infections have been confirmed in wild snake populations in Texas; however, it is unknown if the pathogen is novel (i.e., invasive) or endemic to the state. To address this knowledge gap, we conducted surveys for Oo among preserved Nerodia deposited at three university museums in Texas. First, we visually assessed snakes for signs of infection (SOI), and if SOI were present, we sampled the affected area. We then used quantitative polymerase chain reaction to diagnose the presence of Oo DNA on areas with SOI and used these data to evaluate spatiotemporal patterns of Oo prevalence. We also tested for significant spatial clusters of Oo infenction using a Bernoulli probability model as implemented in the program SatScan. We found that the proportion of snakes exhibiting SOI was constant over time while the prevalence of Oo DNA among those SOI increased across space and time. Within these data, we detected an incidence pattern consistent with an introduction and then spread. We detected six spatial clusters of Oo infection, although only one was significant. Our results support the hypothesis that Oo is an emerging, novel pathogen to Texas snakes. These data narrow the knowledge gap regarding the history of Oo infections in Texas and establish a historical record of confirmed Oo detections in several counties across the state. Thus, our results will guide future research to those areas with evidence of past Oo infections but lacking confirmation in contemporary hosts.
Project description:Snake fungal disease (SFD) is an emerging disease of conservation concern in eastern North America. Ophidiomyces ophiodiicola, the causative agent of SFD, has been isolated from over 30 species of wild snakes from six families in North America. Whilst O. ophiodiicola has been isolated from captive snakes outside North America, the pathogen has not been reported from wild snakes elsewhere. We screened 33 carcasses and 303 moulted skins from wild snakes collected from 2010-2016 in Great Britain and the Czech Republic for the presence of macroscopic skin lesions and O. ophiodiicola. The fungus was detected using real-time PCR in 26 (8.6%) specimens across the period of collection. Follow up culture and histopathologic analyses confirmed that both O. ophiodiicola and SFD occur in wild European snakes. Although skin lesions were mild in most cases, in some snakes they were severe and were considered likely to have contributed to mortality. Culture characterisations demonstrated that European isolates grew more slowly than those from the United States, and phylogenetic analyses indicated that isolates from European wild snakes reside in a clade distinct from the North American isolates examined. These genetic and phenotypic differences indicate that the European isolates represent novel strains of O. ophiodiicola. Further work is required to understand the individual and population level impact of this pathogen in Europe.
Project description:Snake fungal disease (SFD) is a clinical syndrome associated with dermatitis, myositis, osteomyelitis, and pneumonia in several species of free-ranging snakes in the US. The causative agent has been suggested as Ophidiomyces ophiodiicola, but other agents may contribute to the syndrome and the pathogenesis is not understood. To understand the role of O. ophiodiicola in SFD, a cottonmouth snake model of SFD was designed. Five cottonmouths (Agkistrodon piscivorous) were experimentally challenged by nasolabial pit inoculation with a pure culture of O. ophiodiicola. Development of skin lesions or facial swelling at the site of inoculation was observed in all snakes. Twice weekly swabs of the inoculation site revealed variable presence of O. ophiodiicola DNA by qPCR in all five inoculated snakes for 3 to 58 days post-inoculation; nasolabial flushes were not a useful sampling method for detection. Inoculated snakes had a 40% mortality rate. All inoculated snakes had microscopic lesions unilaterally on the side of the swabbed nasolabial pit, including erosions to ulcerations and heterophilic dermatitis. All signs were consistent with SFD; however, the severity of lesions varied in individual snakes, and fungal hyphae were only observed in 3 of 5 inoculated snakes. These three snakes correlated with post-mortem tissue qPCR evidence of O. ophiodiicola. The findings of this study conclude that O. ophiodiicola inoculation in a cottonmouth snake model leads to disease similar to SFD, although lesion severity and the fungal load are quite variable within the model. Future studies may utilize this model to further understand the pathogenesis of this disease and develop management strategies that mitigate disease effects, but investigation of other models with less variability may be warranted.
Project description:Ophidiomycosis is an emerging infectious disease caused by the fungus Ophidiomyces ophiodiicola, which has been affecting wild and captive snakes in North America, Europe, and Australia. We report 12 cases of suspected ophidiomycosis in captive colubrid snakes in Japan. Pathological and microbiological examinations were performed, and the results confirmed the diagnosis of ophidiomycosis in two snakes, which indicated that the remaining sympatrically raised snakes also had ophidiomycosis since they exhibited similar lesions. This is the first report of ophidiomycosis in Asia caused by O. ophiodiicola. To prevent the expansion of ophidiomycosis in the natural environment in Japan, there is a need to evaluate the ophidiomycosis carrier status of imported snakes, the pathogenicity of the infection in native snakes, and the prevalence and distribution of O. ophiodiicola in wild and captive snakes. Measures also must be taken to prevent endemicity globally.