Project description:Emerging knowledge shows the importance of early life events in programming the intestinal mucosal immune system and development of the intestinal barrier function. These processes depend heavily on close interactions between gut microbiota and host cells in the intestinal mucosa. In turn, development of the intestinal microbiota is largely dependent on available nutrients and substrates required for the specific microbial community structures to expand. It is currently not known what the specificities are of intestinal microbial community structures in relation to the programming of the intestinal mucosal immune system and development of the intestinal barrier function. The objective of the present study was to investigate the effect of a nutritional intervention on intestinal development of suckling piglets by daily oral administration of fructooligosaccharides (FOS) over a period of 12 days. At the microbiota community level a clear “bifidogenic” effect of the FOS administration was observed in colon digesta at day 14. The former, however, did not translate into significant changes of local gene expression in the colonic mucosa. In the jejunum, significant changes were observed for microbiota composition at day 14, and microbiota diversity at day 25. In addition, significant differentially expressed gene sets in mucosal tissues of jejunum were identified at both days 14 and 25 of age. At the age of 14 days, lower activity of cell cycle-related processes and a higher activity of extracellular matrix processes were observed in jejunal scrapings of piglets supplemented with FOS compared to control piglets. At day 25, lower activity of immune-related processes in jejunal tissue were seen in piglets supplemented with FOS. Histological parameters, villi height and crypt depth, were significantly different at day 25 between the experimental and control group, where piglets supplemented with FOS had higher villi and deeper crypts. We conclude that oral FOS administration during the suckling period of piglets has significant bifidogenic effects on the microbiota in the colon and on gene expression in jejunal mucosa scrapings. We hypothesize that FOS supplementation of suckling piglets results in a higher butyrate production in the colon due to the increase in bifidobacteria and lactobacilli in the hindgut. We further speculate that a higher butyrate production in colonic digesta relates to changes in gene expression in the jejunum by thus far unknown mechanisms.
Project description:Necrotizing enterocolitis (NEC) is an acute and life-threatening gastrointestinal disorder afflicting preterm infants, which is currently unpreventable. Fecal microbiota transplantation (FMT) is a promising preventative therapy, but potential bacterial infection raise concern. Removal of bacteria from donor feces may reduce this risk while maintaining the NEC-preventive effects. We aimed to assess preclinical efficacy and safety of bacteria-free fecal filtrate transfer (FFT). Using fecal material from healthy suckling piglets, we administered FMT rectally, or cognate FFT either rectally or oro-gastrically to formula-fed preterm, cesarean-delivered piglets as a model for preterm infants, We compared gut pathology and related safety parameters with saline controls, and analyzed ileal mucosal transcriptome to gauge the host e response to FMT and FFT treatments relative to control. Results showed that oro-gastric FFT prevented NEC, whereas FMT did not perform better than control. Moreover, FFT but not FMT reduced intestinal permeability, whereas FMT animals had reduced body weight increase and intestinal growth. Global gene expression of host mucosa responded to FMT but not FFT with increased and decreased bacterial and viral defense mechanisms, respectively. In conclusion, as preterm infants are extremely vulnerable to enteric bacterial infections, rational NEC-preventive strategies need incontestable safety profiles. Here we show in a clinically relevant animal model that FFT, as opposed to FMT, efficiently prevents NEC without any recognizable side effects. If translatable to preterm infants, this could lead to a change of practice and in turn a reduction in NEC burden.
Project description:Early-weaning-induced stress causes diarrhea, thereby reduces growth performance of piglets. Gut bacterial dysbiosis emerges as a leading cause of post-weaning diarrhea. The present study was aimed to investigate the effect of capsulized fecal microbiota transportation (FMT) on gut bacterial community, immune response and gut barrier function of weaned piglets. Thirty-two were randomly divided into two groups fed with basal diet for 21 days. Recipient group was inoculated orally with capsulized fecal microbiota of health Tibetan pig daily morning during whole period of trial, while control group was given orally empty capsule. The results showed that the F/G ratio, diarrhea ratio, diarrhea index, and histological damage score of recipient piglets were significantly decreased. FMT treatment also significantly increased the colon length of piglets. Furthermore, the relative abundances of Firmicutes, Euryarchaeota, Tenericutes, Lactobacillus, Methanobrevibacter and Sarcina in colon of recipient piglets were increased, and the relative abundances of Campylobacter, Proteobacteria, and Melainabacteria were significantly decreased compared with control group.
Project description:Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which in turn changes the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology and gene expression, day 21-old germ-free mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity however, SMM mice had higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there were higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 (ILC2) were increased in MFM mice supplemented with HMOs while in the spleen, they were increased in SMM+HMOs mice. Similarly, serum immunoglobulin A (IgA) was also elevated in MFM+HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data shows that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response and intestinal gene expression in a mouse model.
Project description:Comparison of the growth of Bifidobacterium animalis subsp. lactis BB12 in MRS (without carbon source) with either 2% XOS (xylo-oligosaccharides) or 2% glucose using whole-genome transcriptome analysis.
Project description:<p><strong>BACKGROUND:</strong> Dietary intervention has been reported to improve intestinal health. The intestinal microbiota of newborn animals plays a fundamental role in the development of intestinal function and the innate immune system. However, little is currently known about dietary interventions in the gut microbiota and barrier function of livestock, especially suckling Bamei piglets. To this end, we studied the effect of early dietary supplementation on intestinal bacterial communities and intestinal barrier function in piglets.</p><p><strong>RESULTS:</strong> 10 purebred Bamei sows were randomly allocated into two groups. In group one, the piglets received a supplementary milk replacer on day 7 of age, whereas the other control group was allowed sow’s milk alone. At 21 days, 18 and 17, respectively, piglets in each group of average weight were randomly selected and sacrificed. Tissue and digesta samples were collected from the jejunum to evaluate differences in the microbiome-metabolome and the mRNA expression of inflammatory cytokines (TLR4, TNFα and IL-8) and barrier proteins (ZO-1, Occludin and Claudin-1). Sequencing of 16S rRNA revealed that ES improved the gut microbiome composition of Bamei suckling piglets. The relative abundances of some bacterial species such as Lactobacillales, Romboutsia, Actinobacillus, Bacteroides were significantly reduced in the ES group. Metabolomics analysis indicated that 23 compounds were enriched and 35 compounds decreased in the ES group. And correlation analysis demonstrated that some gut bacterial genera were highly correlated with altered gut microbiota-related metabolites. Meanwhile, ES of Bamei suckling piglets altered the gene expression of inflammatory cytokine and barrier protein in the jejunum.</p><p><strong>CONCLUSIONS:</strong> In summary, these results provide important insights on the relationships between jejunal microbiota and related metabolites, and jejunal barrier function during the early life of Bamei suckling piglets.</p>
2020-06-05 | MTBLS1698 | MetaboLights
Project description:Cecal microbiota of Suckling Piglets
| PRJNA492210 | ENA
Project description:Early-life galacto-oligosaccharides supplementation protects the small intestinal function of lipopolysaccharides-challenged suckling piglets via modulating gut microbiota composition
Project description:Lignocellulose degradation by microbes plays a central role in global carbon cycling, human gut metabolism, and renewable energy technologies While considerable effort has been put into understanding the biochemical aspects of lignocellulose degradation, much less work has been done to understand how these enzymes work in an in vivo context Here, we report a systems level study of xylan degradation in the saprophytic bacterium Cellvibrio japonicus Transcriptome analysis indicated seven genes that encode carbohydrate active enzymes were up-regulated during growth with xylan containing media In-frame deletion analysis of these genes found that only gly43F is critical for utilization of xylo-oligosaccharides, xylan, and arabinoxylan Heterologous expression of gly43F was sufficient for the utilization of xylo-oligosaccharides in Escherichia coli Additional analysis found that the xyn11A, xyn11B, abf43L, abf43K, and abf51A gene products were critical for utilization of arabinoxylan Furthermore, a predicted transporter (CJA_1315) was required for effective utilization of xylan substrates, and we propose this unannotated gene be called xntA (xylan transporter A) Our major findings are 1) C japonicus employs both secreted and surface associated enzymes for xylan degradation, which differs from the strategy used for cellulose degradation, and 2) a single cytoplasmic β-xylosidase is essential for the utilization of xylo-oligosaccharides