Project description:To deeply investigate the details of the nano-SiO2 effects, we examined the gene expression profile alterations after nano-SiO2 treatment in BMMCs. The difference analysis between the groups showed that 285 genes were significantly expressed after treatment with nano-SiO2. Compared with the blank group, both nano-SiO2 exposure and DNP-HSA stimulation increased the expression of genes related to the MAPK signaling pathway in mast cells to varying degrees.
Project description:Probing epigenomic marks such as histone modifications at a single cell level in thousands of cells has been recently enabled by technologies such as scCUT&Tag. Here we developed a multimodal and optimized iteration of scCUT&Tag called nano-CT (for nano-CUT&Tag) that allows simultaneous probing of three epigenomic modalities at single-cell resolution, using nanobody-Tn5 fusion proteins. nano-CT is compatible with starting materials as low as 25 000 cells and has significantly higher resolution than scCUT&Tag, with a 16-fold increase in the number of fragments per cells. We used nano-CT to simultaneously profile chromatin accessibility, H3K27ac and H3K27me3 in a complex tissue - juvenile mouse brain. The obtained multimodal dataset allowed for discrimination of more cell types/states that scCUT&Tag, and inference of chromatin velocity between ATAC and H3K27ac in the oligodendrocyte (OL) lineage. In addition, we used nano-CT to deconvolute H3K27me3 repressive states and infer two sequential waves of H3K27me3 repression at distinct gene modules during OL lineage progression. Thus, given its high resolution, versatility, and multimodal features, nano-CT allows unique insights in epigenetic landscapes in different biological systems at single cell level.
Project description:To screen for novel toxicological endpoints of nano-particles, we conducted an in vitro expression profiling study using human lung epithelial cells (A549). To identify effects that are specific to size or chemical origin, we compared gene expression of A549 cells treated with nano-sized and micro-sized particulates of two chemical origins (carbon and silica) to the control (untreated) cells.
Project description:Profiling miRNA expression in cells that directly contribute to human disease pathogenesis is likely to aid the discovery of novel drug targets and biomarkers. However, tissue heterogeneity and the limited amount of human diseased tissue available for research purposes present fundamental difficulties that often constrain the scope and potential of such studies. We established a flow cytometry-based method for isolating pure populations of pathogenic T cells from bronchial biopsy samples of asthma patients, and optimized a high-throughput nano-scale qRT-PCR method capable of accurately measuring 96 miRNAs in as little as 100 cells. Comparison of circulating and airway T cells from healthy and asthmatic subjects revealed asthma-associated and tissue-specific miRNA expression patterns. These results establish the feasibility and utility of investigating miRNA expression in small populations of cells involved in asthma pathogenesis, and set a precedent for application of our nano-scale approach in other human diseases. We analyzed the concordance in results obtained by nano-scale qPCR and miRNA microarrays. RNA extracted from human Th2 cells was used for parallel profiling by both nano-scale PCR and microarray method. Fifty nanograms (ng) of RNA was used for the microarray method and cDNA from 1 ng (~1000 cell equivalent) of RNA, pre-amplified by 18 cycle PCR reaction, was used for miRNA detection by the nano-scale qPCR method (G.Seumois et al. in submission). Out of the 92 miRNAs assayed, 51 were detected by nano-scale qPCR. Of these, 45 were detected by microarray analysis, including the 32 miRNAs with the strongest signal intensities on the nano-scale qPCR platform.
2013-01-11 | GSE31030 | GEO
Project description:Effects of acute exposure to nano-silver on zebrafish larvae
Project description:An estimated 1% or less of the nanoparticles (NPs) deposited in lungs translocate to systemic circulation and enter other organs; however this estimation may not be accurate considering the low sensitivity of the existing in vivo NP detection methods. Moreover, the biological outcomes of such low levels of translocation are not elucidated. The objectives of the present study were to employ a Nano-scale Hyperspectral Microscope to spatially observe and spectrally profile NPs in tissues, and characterize the effects of NPs in blood, liver and heart following pulmonary deposition and subsequent translocation from lungs. Adult female C57BL/6 mice were exposed via intratracheal instillation to 18 and 162 µg per mouse of industrially relevant non-doped titanium dioxide nanoparticles (nano-TiO2). Using the Nano-scale Hyperspectral Microscope translocation to heart and liver was confirmed at both doses and to blood at the highest dose at 24 hours post-exposure time-point. The analysis of biological effects using DNA microarrays, RT-qPCR and ELISA revealed activation of complement cascade and inflammatory process in heart and specific activation of complement factor 3 in blood, potentially suggestive of activation of early innate immune response essential for particle opsonisation and clearance. The liver showed subtle response with changes in the expression of few genes associated with acute phase genes. This study establishes a direct link between particle translocation and systemic effects. An estimated 1% or less of the nanoparticles (NPs) deposited in lungs translocate to systemic circulation and enter other organs; however this estimation may not be accurate considering the low sensitivity of the existing in vivo NP detection methods. Moreover, the biological outcomes of such low levels of translocation are not elucidated. The objectives of the present study were to employ a Nano-scale Hyperspectral Microscope to spatially observe and spectrally profile NPs in tissues, and characterize the effects of NPs in blood, liver and heart following pulmonary deposition and subsequent translocation from lungs. Adult female C57BL/6 mice were exposed via intratracheal instillation to 18 and 162 µg per mouse of industrially relevant non-doped titanium dioxide nanoparticles (nano-TiO2). Using the Nano-scale Hyperspectral Microscope translocation to heart and liver was confirmed at both doses and to blood at the highest dose at 24 hours post-exposure time-point. The analysis of biological effects using DNA microarrays, RT-qPCR and ELISA revealed activation of complement cascade and inflammatory process in heart and specific activation of complement factor 3 in blood, potentially suggestive of activation of early innate immune response essential for particle opsonisation and clearance. The liver showed subtle response with changes in the expression of few genes associated with acute phase genes. This study establishes a direct link between particle translocation and systemic effects.
Project description:An estimated 1% or less of the nanoparticles (NPs) deposited in lungs translocate to systemic circulation and enter other organs; however this estimation may not be accurate considering the low sensitivity of the existing in vivo NP detection methods. Moreover, the biological outcomes of such low levels of translocation are not elucidated. The objectives of the present study were to employ a Nano-scale Hyperspectral Microscope to spatially observe and spectrally profile NPs in tissues, and characterize the effects of NPs in blood, liver and heart following pulmonary deposition and subsequent translocation from lungs. Adult female C57BL/6 mice were exposed via intratracheal instillation to 18 and 162 µg per mouse of industrially relevant non-doped titanium dioxide nanoparticles (nano-TiO2). Using the Nano-scale Hyperspectral Microscope translocation to heart and liver was confirmed at both doses and to blood at the highest dose at 24 hours post-exposure time-point. The analysis of biological effects using DNA microarrays, RT-qPCR and ELISA revealed activation of complement cascade and inflammatory process in heart and specific activation of complement factor 3 in blood, potentially suggestive of activation of early innate immune response essential for particle opsonisation and clearance. The liver showed subtle response with changes in the expression of few genes associated with acute phase genes. This study establishes a direct link between particle translocation and systemic effects. An estimated 1% or less of the nanoparticles (NPs) deposited in lungs translocate to systemic circulation and enter other organs; however this estimation may not be accurate considering the low sensitivity of the existing in vivo NP detection methods. Moreover, the biological outcomes of such low levels of translocation are not elucidated. The objectives of the present study were to employ a Nano-scale Hyperspectral Microscope to spatially observe and spectrally profile NPs in tissues, and characterize the effects of NPs in blood, liver and heart following pulmonary deposition and subsequent translocation from lungs. Adult female C57BL/6 mice were exposed via intratracheal instillation to 18 and 162 µg per mouse of industrially relevant non-doped titanium dioxide nanoparticles (nano-TiO2). Using the Nano-scale Hyperspectral Microscope translocation to heart and liver was confirmed at both doses and to blood at the highest dose at 24 hours post-exposure time-point. The analysis of biological effects using DNA microarrays, RT-qPCR and ELISA revealed activation of complement cascade and inflammatory process in heart and specific activation of complement factor 3 in blood, potentially suggestive of activation of early innate immune response essential for particle opsonisation and clearance. The liver showed subtle response with changes in the expression of few genes associated with acute phase genes. This study establishes a direct link between particle translocation and systemic effects.
Project description:Acute phase reactants serum amyloid A-1, 3 and micro RNA-135b, -449a, and -1 are induced in lungs of mice exposed to subtoxic doses of nano-titanium dioxide particles by inhalation In the present study we investigate pulmonary mRNA and miRNA profiles of mice exposed to subtoxic dose of nano-titanium dioxide particles by inhalation. We show dramatic induction of acute phase reactants, chemoattractants, immune and host defence related genes. We also demonstrate for the first time changes in miRNA profiles in the lungs in response to nanoTiO2. Keywords: Toxicology, disease state analysis, biomarkers of health effects