Project description:The effects of two years' winter warming on the overall fungal functional gene structure in Alaskan tundra soil were studies by the GeoChip 4.2 Resuts showed that two years' winter warming changed the overall fungal functional gene structure in Alaskan tundra soil.
Project description:Cropping soils vary in extent of natural suppression of soil-borne plant diseases. However, it is unknown whether similar variation occurs across pastoral agricultural systems. We examined soil microbial community properties known to be associated with disease suppression across 50 pastoral fields varying in management intensity. The composition and abundance of the disease-suppressive community were assessed from both taxonomic and functional perspectives.
2018-03-30 | GSE112489 | GEO
Project description:Agricultural management on structure and function of the soil microbial community
| PRJNA481896 | ENA
Project description:Soil fungal community structure and function with biochar amendment
Project description:The response of soil microbial community to climate warming through both function shift and composition reorganization may profoundly influence global nutrient cycles, leading to potential significant carbon release from the terrain to the atmosphere. Despite the observed carbon flux change in northern permafrost, it remains unclear how soil microbial community contributes to this ecosystem alteration. Here, we applied microarray-based GeoChip 4.0 to investigate the functional and compositional response of subsurface (15~25cm) soil microbial community under about one year’s artificial heating (+2°C) in the Carbon in Permafrost Experimental Heating Research site on Alaska’s moist acidic tundra. Statistical analyses of GeoChip signal intensities showed significant microbial function shift in AK samples. Detrended correspondence analysis and dissimilarity tests (MRPP and ANOSIM) indicated significant functional structure difference between the warmed and the control communities. ANOVA revealed that 60% of the 70 detected individual genes in carbon, nitrogen, phosphorous and sulfur cyclings were substantially increased (p<0.05) by heating. 18 out of 33 detected carbon degradation genes were more abundant in warming samples in AK site, regardless of the discrepancy of labile or recalcitrant C, indicating a high temperature sensitivity of carbon degradation genes in rich carbon pool environment. These results demonstrated a rapid response of northern permafrost soil microbial community to warming. Considering the large carbon storage in northern permafrost region, microbial activity in this region may cause dramatic positive feedback to climate change, which is important and necessary to be integrated into climate change models.
Project description:Soil microbial community is a complex blackbox that requires a multi-conceptual approach (Hultman et al., 2015; Bastida et al., 2016). Most methods focus on evaluating total microbial community and fail to determine its active fraction (Blagodatskaya & Kuzyakov 2013). This issue has ecological consequences since the behavior of the active community is more important (or even essential) and can be different to that of the total community. The sensitivity of the active microbial community can be considered as a biological mechanism that regulates the functional responses of soil against direct (i.e. forest management) and indirect (i.e. climate change) human-induced alterations. Indeed, it has been highglihted that the diversity of the active community (analyzed by metaproteomics) is more connected to soil functionality than the that of the total community (analyzed by 16S rRNA gene and ITS sequencing) (Bastida et al., 2016). Recently, the increasing application of soil metaproteomics is providing unprecedented, in-depth characterisation of the composition and functionality of active microbial communities and overall, allowing deeper insights into terrestrial microbial ecology (Chourey et al., 2012; Bastida et al., 2015, 2016; Keiblinger et al., 2016). Here, we predict the responsiveness of the soil microbial community to forest management in a climate change scenario. Particularly, we aim: i) to evaluate the impacts of 6-years of induced drought on the diversity, biomass and activity of the microbial community in a semiarid forest ecocosystem; and ii) to discriminate if forest management (thinning) influences the resistance of the microbial community against induced drought. Furthermore, we aim to ascertain if the functional diversity of each phylum is a trait that can be used to predict changes in microbial abundance and ecosystem functioning.
2021-02-02 | PXD005447 | Pride
Project description:soil bacterial and fungal community structure
| PRJNA763299 | ENA
Project description:Fungal community structure of wetland soil
| PRJNA660325 | ENA
Project description:Fungal community structure in rhizosphere soil