Project description:BackgroundUsing next-generation sequencing (NGS) in newborn screening (NBS) could expand the number of genetic conditions detected pre-symptomatically, simultaneously challenging current precedents, raising ethical concerns, and extending the role of parental decision-making in NBS. The NC NEXUS (Newborn Exome Sequencing for Universal Screening) study seeks to assess the technical possibilities and limitations of NGS-NBS, devise and evaluate a framework to convey various types of genetic information, and develop best practices for incorporating NGS-NBS into clinical care. The study is enrolling both a healthy cohort and a cohort diagnosed with known disorders identified through recent routine NBS. It uses a novel age-based metric to categorize a priori the large amount of data generated by NGS-NBS and interactive online decision aids to guide parental decision-making. Primary outcomes include: (1) assessment of NGS-NBS sensitivity, (2) decision regret, and (3) parental decision-making about NGS-NBS, and, for parents randomized to have the option of requesting them, additional findings (diagnosed and healthy cohorts). Secondary outcomes assess parents' reactions to the study and to decision-making.Methods/designParticipants are parents and children in a well-child cohort recruited from a prenatal clinic and a diagnosed cohort recruited from pediatric clinics that treat children with disorders diagnosed through traditional NBS (goal of 200 children in each cohort). In phase 1, all parent participants use an online decision aid to decide whether to accept NGS-NBS for their child and provide consent for NGS-NBS. In phase 2, parents who consent to NGS-NBS are randomized to a decision arm or control arm (2:1 allocation) and learn their child's NGS-NBS results, which include conditions from standard (non-NGS) NBS plus other highly actionable childhood-onset conditions. Parents in the decision arm use a second decision aid to make decisions about additional results from their child's sequencing. In phase 3, decision arm participants learn additional results they have requested. Online questionnaires are administered at up to five time points.DiscussionNC NEXUS will use a rigorous interdisciplinary approach designed to collect rich data to inform policy, practice, and future research.Trial registrationclinicaltrials.gov, NCT02826694 . Registered on 11 July, 2016.
Project description:Newborn screening (NBS) was established as a public health program in the 1960s and is crucial for facilitating detection of certain medical conditions in which early intervention can prevent serious, life-threatening health problems. Genomic sequencing can potentially expand the screening for rare hereditary disorders, but many questions surround its possible use for this purpose. We examined the use of exome sequencing (ES) for NBS in the North Carolina Newborn Exome Sequencing for Universal Screening (NC NEXUS) project, comparing the yield from ES used in a screening versus a diagnostic context. We enrolled healthy newborns and children with metabolic diseases or hearing loss (106 participants total). ES confirmed the participant's underlying diagnosis in 15 out of 17 (88%) children with metabolic disorders and in 5 out of 28 (∼18%) children with hearing loss. We discovered actionable findings in four participants that would not have been detected by standard NBS. A subset of parents was eligible to receive additional information for their child about childhood-onset conditions with low or no clinical actionability, clinically actionable adult-onset conditions, and carrier status for autosomal-recessive conditions. We found pathogenic variants associated with hereditary breast and/or ovarian cancer in two children, a likely pathogenic variant in the gene associated with Lowe syndrome in one child, and an average of 1.8 reportable variants per child for carrier results. These results highlight the benefits and limitations of using genomic sequencing for NBS and the challenges of using such technology in future precision medicine approaches.
Project description:Importance:X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal genetic disorder in which an accumulation of very long-chain fatty acids leads to inflammatory demyelination in the central nervous system and to adrenal cortex atrophy. In 2016, X-ALD was added to the US Recommended Uniform Screening Panel. Objective:To evaluate the performance of a single-tier newborn screening assay for X-ALD in North Carolina. Design, Setting, and Participants:This diagnostic screening study was of all newborn dried blood spot specimens received in the North Carolina State Laboratory of Public Health between January 2 and June 1, 2018, excluding specimens of insufficient quantity or quality. A total of 52?301 specimens were screened for X-ALD using negative ionization high-performance liquid chromatography tandem mass spectrometry to measure C24:0- and C26:0-lysophosphatidylcholine concentrations. Sanger sequencing of the adenosine triphosphate-binding cassette subfamily D member 1 (ABCD1) gene was performed on screen-positive specimens. Exposures:A medical and family history, newborn physical examination, sequencing of ABCD1 on dried blood spot samples, and plasma analysis of very long-chain fatty acids were obtained for all infants with screen-positive results. Main Outcomes and Measures:The prevalence of X-ALD in North Carolina and the positive predictive value and false-positive rate for the first-tier assay were determined. Results:Of 52?301 infants tested (47.8% female, 50.6% male, and 1.7% other or unknown sex), 12 received screen-positive results. Of these 12 infants, 8 were confirmed with a genetic disorder: 3 male infants with X-ALD, 3 X-ALD-heterozygous female infants, 1 female infant with a peroxisome biogenesis disorder, and 1 female infant with Aicardi-Goutières syndrome. Four infants were initially classified as having false-positives results, including 3 female infants who were deemed unaffected and 1 male infant with indeterminate results on confirmatory testing. The positive predictive value for X-ALD or other genetic disorders for the first-tier assay was 67%, with a false-positive rate of 0.0057%. Conclusions and Relevance:This newborn screening pilot study reported results on 2 lysophosphatidylcholine analytes, identifying 3 male infants with X-ALD, 3 X-ALD-heterozygous female infants, and 3 infants with other disorders associated with increased very long-chain fatty acids. These results showed successful implementation in a public health program with minimal risk to the population. The findings will support other state laboratories planning to implement newborn screening for X-ALD and related disorders.
Project description:Efforts to track and model SARS-CoV-2 infection dynamics in the population have been complicated by certain aspects of the transmission characteristics, which include a pre-symptomatic infectious phase as well as asymptomatic infectious individuals. Another problem is that many models focus on case count, as there has been (and is) limited data regarding infection status of members of the population, which is the most important aspect for constructing transmission models. This paper describes and explains the parameterization, calibration, and revision of the NC-COVID model, a compartmental model to estimate SARS-CoV-2 infection dynamics for the state of North Carolina, US. The model was developed early in the pandemic to provide rapid, up-to-date state-level estimates of the number of people who were currently infected, were immune from a prior infection, and remained susceptible to infection. As a post modeling exercise, we assessed the veracity of the model by comparing its output to SARS-CoV-2 viral particle concentrations detected in wastewater data and to estimates of people infected using COVID-19 deaths. The NC-COVID model was highly correlated with these independently derived estimates, suggesting that it produced accurate estimates of SARS-CoV-2 infection dynamics in North Carolina.
Project description:BackgroundAlthough the incidence of venous and arterial thrombosis after a COVID-19 diagnosis and hospitalization has been well described using data available from electronic health records (EHR), little is known about their incidence after mild infections.ObjectivesTo characterize the cumulative incidence and risk factors for thrombosis after a COVID-19 diagnosis among those identified through the EHR and those with a self-reported case.MethodsWe calculated the cumulative incidence of thromboembolism diagnoses after EHR-identified and self-reported cases in the North Carolina COVID-19 Community Partnership, a prospective, multisite, longitudinal surveillance cohort using a Kaplan-Meier approach. We performed Cox regression to estimate the hazard of a thromboembolism diagnosis after COVID-19 by comorbidities, vaccination status, and dominant SARS-CoV-2 variant.ResultsOf a cohort of comprising more than 39,500 participants from 6 North Carolina sites, there were 6271 self-reported or EHR-diagnosed cases of COVID-19 reported between July 1, 2020, and April 30, 2022, of which 46 participants were diagnosed with a new-onset thromboembolism in the 365 days after their reported case. Self-reported cases had a lower estimated cumulative incidence of 0.15% (95% CI, 0.03-0.28) by day 90 and 0.64% (95% CI, 0.30-0.97) by day 365 compared with EHR-based diagnoses that had cumulative incidences of 0.73% (95% CI, 0.36-1.09) and 1.78 (95% CI, 1.14-2.46) by days 90 and 365 (log-rank test P value <.001). Those hospitalized and with pre-existing pulmonary and cardiovascular diseases were associated with the highest risk of a thromboembolism.ConclusionWe observed a higher cumulative incidence of thromboembolism after EHR-identified COVID-19 than self-reported cases.
Project description:Bulk RNA was extracted via trizol at Fibroblasts stage, 5 days, 10 days, 15 days, and 20 days of fibroblast to neuron conversion using traditional NC media, or NC media supplemented with ZM336372, pyrintegrin, AZ960, and KC7F2