Project description:Morphine causes microbial dysbiosis. In this study we focused on restoration of native microbiota in morphine treated mice and looked at the extent of restoration and immunological consequences of this restoration. Fecal transplant has been successfully used clinically, especially for treating C. difficile infection2528. With our expanding knowledge of the central role of microbiome in maintenance of host immune homeostasis17, fecal transplant is gaining importance as a therapy for indications resulting from microbial dysbiosis. There is a major difference between fecal transplant being used for the treatment of C. difficile infection and the conditions described in our studies. The former strategy is based on the argument that microbial dysbiosis caused by disproportionate overgrowth of a pathobiont can be out-competed by re-introducing the missing flora by way of a normal microbiome transplant. This strategy is independent of host factors and systemic effects on the microbial composition. Here, we show that microbial dysbiosis caused due to morphine can be reversed by transplantation of microbiota from the placebo-treated animals.
Project description:We aimed to investigate the microbial community composition in patients with intracerebral hemorrhage (ICH) and its effect on prognosis. The relationship between changes in bacterial flora and the prognosis of spontaneous cerebral hemorrhage was studied in two cohort studies. Fecal samples from healthy volunteers and patients with intracerebral hemorrhage were subjected to 16S rRNA sequencing at three time points: T1 (within 24 hours of admission), T2 (3 days post-surgery), and T3 (7 days post-surgery) using Illumina high-throughput sequencing technology.
Project description:Secreted phospholipase A2-IIA (sPLA2-IIA) hydrolyzes phospholipids to liberate lysophospholipids and fatty acids. Given its poor activity toward eukaryotic cell membranes, its role in the generation of proinflammatory lipid mediators is unclear. Conversely, sPLA2-IIA efficiently hydrolyzes bacterial membranes. Here, we show that sPLA2-IIA impacts on the immune system by acting on the intestinal microbial flora. Using mice overexpressing transgene-driven human sPLA2-IIA, we found that the intestinal microbiota was critical for both induction of an immune phenotype and promotion of inflammatory arthritis. The expression of sPLA2-IIA led to alterations of the intestinal microbiota composition, but housing in a more stringent pathogen-free facility revealed that its expression could affect the immune system in the absence of changes to the composition of this flora. In contrast, untargeted lipidomic analysis focusing on bacteria-derived lipid mediators revealed that sPLA2-IIA could profoundly alter the fecal lipidome. The data suggest that a singular protein, sPLA2-IIA, produces systemic effects on the immune system through its activity on the microbiota and its lipidome.
Project description:<p>We investigate the hypothesis that consistent changes in the human gut microbiome are associated with Crohn's disease, a form of inflammatory bowel disease, and that altered microbiota contributes to pathogenesis. Analysis of this problem is greatly complicated by the fact that multiple factors influence the composition of the gut microbiota, including diet, host genotype, and disease state. For example, data from us and others document a drastic impact of diet on the composition of the gut microbiome. No amount of sequencing will yield a useful picture of the role of the microbiota in disease if samples are confounded with uncontrolled variables.</p> <p>We aim to characterize the composition of the gut microbiome while controlling for diet, host genotype, and disease state. Diet is controlled by analyzing children treated for Crohn's disease by placing them on a standardized elemental diet, and by testing effects of different diets on the gut microbiome composition in adult volunteers. Genotype is analyzed by large scale SNP genotyping, which is already underway and separately funded--team member Hakon Hakonarson is currently genotyping 50 children a week at ~half a million loci each and investigating connections with inflammatory bowel disease. Clinical status is ascertained in the very large IBD practice in the UPenn/CHOP hospital system. Effects of diet, host genotype, and disease state on the gut microbiome are summarized in a multivariate model, allowing connections between microbiome and disease to be assessed free of confounding factors.</p> <p>This project is divided into four sub-studies. In the Fecal Storage Methods (FSM) study, methods of stool storage and DNA extraction are compared to examine their impact on DNA sequence analysis results. The Controlled Feeding Experiment (CaFE) addresses the effects of controlled diets on the gut microbiome. In the Cross-sectional Study of Diet and Stool Microbiome Composition (COMBO), the effects of diet analyzed using surveys and deep sequencing of stool specimens. The fourth study, Pediatric Longitudinal Study of Elemental Diet and Stool Microbiome Composition (PLEASE), examines the effects of an elemental diet treatment on pediatric patients diagnosed with inflammatory bowel disease (IBD), particularly Crohn's disease.</p> <p> <ul> <li>Fecal Storage Methods (FSM): Cross-sectional study</li> <li>Controlled Feeding Experiment (CaFE): Controlled trial</li> <li>Cross-sectional Study of Diet and Stool Microbiome Composition (COMBO): Cross-sectional study</li> <li>Pediatric Longitudinal Study of Elemental Diet and Stool Microbiome Composition (PLEASE): Longitudinal cohort study</li> </ul> </p>
Project description:Folic acid deficiency is common worldwide and is linked to intestinal flora imbalance. The intestinal microbial utilization of folic acid based on model animals faces the challenges of repeatability and individual variability. In this study, we built an in vitro fecal slurry culture model deficient in folic acid. We examined the effects of supplementation with different forms of folic acid (5-methyltetrahydrofolate and non-reduced folic acid) on the modulation of intestinal flora. 16S rDNA gene sequencing showed alpha diversity increased after folic acid supplementation compared to fermentation samples with folic acid deficiency. In the non-reduced folic acid (FA) group, the relative abundance of the Firmicutes phylum dropped to 56.7%, whereas in the 5-methyltetrahydrofolate (MTHF) supplementation group, it grew to 64.9%. Lactobacillus genera became more prevalent, reaching 22.8% and 30.8%, respectively. Additionally, Bifidobacterium and Pedioccus, two common probiotic bacteria, were in higher abundance. Short-chain fatty acids (SCFAs) analysis showed that supplementation with folic acid (non-reduced folic acid, 5-methyltetrahydrofolate) decreased acetic acid and increased the fermentation yield of isobutyric acid. The in vitro fecal slurry culture model developed in this study can be utilized as a human folic acid deficiency model for studying intestinal microbiota and demonstrated that both 5-methyltetrahydrofolate and non-reduced folic acid have effects on the regulation of intestinal microecology.
Project description:We found that low protein diet consumption resulted in decrease in the percentage of normal Paneth cell population in wild type mice, indicating that low protein diet could negatively affect Paneth cell function. We performed fecal microbiota composition profiling. Male mice were used at 4-5 weeks of age. Fecal samples were collected for microbiome analysis.
Project description:We found that western diet consumption resulted in decrease in the percentage of normal Paneth cell population in wild type mice, indicating that western diet could negatively affect Paneth cell function. Subsequent generations of western diet consumption further reduced percentages of normal Paneth cell population. We performed fecal microbiota composition profiling. Male mice were used at 4-5 weeks of age. Fecal samples were collected for microbiome analysis.