Project description:The pathogenesis of avian influenza A H5N1 virus in human has not been clearly elucidated. There have been increasing evidence suggesting a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. However, the role of aberrant innate immune response in human lungs infected by avian influenza H5N1 virus has not been explored and direct evidence for inappropriate innate responses in lungs of avian influenza H5N1 virus infected patients is lacking. In order to obtain evidences for the proposed role of aberrant innate immune response in avian influenza H5N1 virus pathogenesis in human, we analyzed expression profile of lung tissues from two fatal cases of avian influenza H5N1 virus infected patients in comparison to normal human lung using an expression microarray.
Project description:Sanhong Liu, Shigui Ruan & Xinan Zhang. Nonlinear dynamics of avian influenza epidemic models. Mathematical Biosciences 283 (2017).
Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results.
Project description:Sanhong Liu, Shigui Ruan & Xinan Zhang. Nonlinear dynamics of avian influenza epidemic models. Mathematical Biosciences 283 (2017).
Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results.
Project description:The pathogenesis of avian influenza A H5N1 virus in human has not been clearly elucidated. There have been increasing evidence suggesting a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. However, the role of aberrant innate immune response in human lungs infected by avian influenza H5N1 virus has not been explored and direct evidence for inappropriate innate responses in lungs of avian influenza H5N1 virus infected patients is lacking.
Project description:Data files associated with manuscript titled "Temporal control of protein labeling by photo-caged benzaldehyde motif and discovery of host cell factors of avian influenza virus infection".
we applied our probes for unbiased host-pathogen interaction factor discovery for avian influenza (AI) virus.
These Chemoproteomics analysis illustrate that the unbiased fishing strategy using photo-activated benzaldehyde probes has potential to open up a novel biomarker discovery.
Project description:Background:Dendritic cells (DCs), have the most important antigen presenting ability and played an irreplaceable role in recognizing and clearing virus. Antiviral responses must rapidly defend against infection while minimizing inflammatory damage, but the mechanisms that regulate the magnitude of response within an infected cell are not well understood. MicroRNA, small non-coding RNAs, that can regulate dendritic cells to inhibit the infection and replication of avian influenza virus. Here, we global analyses how avian DCs response to H9N2 avian influenza virus (AIV) and provide a potential mechanism of how avian microRNA defending H9N2 AIV replication. Results: Here, we global analyses how avian DCs response to H9N2 avian influenza virus (AIV) and provide a potential mechanism of how avian microRNA defending H9N2 AIV replication. First, we found that both active and inactive H9N2 AIV enhance the ability of DCs to present antigens and activate T lymphocytes. Next, total microarray analyses suggested that H9N2 AIV stimulation involved in protein localization, nucleotide binding and leukocyte transendothelial migration and MAPK signal pathways. Moreover, we construct 551 transcription factor (TF)-microRNA-mRNA loops based on the above analyses. Furthermore, we found that HA fragment could not activate DCs, while truncated HA highly increased the immune function of DCs by activating ERK and STAT3 signal pathway. Last, our insight research not only gained that gga-miR1644 might target to MBNL2 to enhanced avian DCs in inhibiting virus replication, but also suggested that gga-miR6675 target to the NLS of PB1 to trigger the silencing of PB1 genes and lead to inhibition of H9N2 avian influenza viral replication. All together, our innovative research will shed new light on the roles of avian microRNA in evoking avian DCs and inhibiting virus replication, which will suggest new strategies to combat avian influenza virus.
Project description:Periodic outbreaks of highly pathogenic avian H5N1 influenza viruses and the current H1N1 pandemic highlight the need for a more detailed understanding of influenza virus pathogenesis. To investigate the host transcriptional response induced by pathogenic influenza viruses, we used a functional-genomics approach to compare gene expression profiles in lungs from wild-type 129S6/SvEv and interferon receptor (IFNR) knockout mice infected with either the fully reconstructed H1N1 1918 pandemic virus (1918) or the highly pathogenic avian H5N1 virus Vietnam/1203/04 (VN/1203).
Project description:With the purpose to elucidate the expression changes of host genes of SPF chickens infected with duck-origin H7N9 subtype avian influenza virus at 24 hours post-infection(hpi) and fowl adenovirus-4 at 48 dpi. The spleens of SPF chickens infected with duck-origin H7N9 subtype avian influenza virus and fowl adenovirus-4 were collected and high throughout sequenced. Compared with the control group, there were 2426 differentially expressed genes were obtained in the duck-origin H7N9 subtype avian influenza virus group, including 913 up-regulated genes and 1513 down-regulated genes, and there were 1534 differentially expressed genes were obtained in the fowl adenovirus-4 group, including 632 up-regulated genes and 902 down-regulated genes.
Project description:PA-X is a small accessory protein that modulates the virulence of various influenza A virus both in mammals and birds. However, the specific role of PA-X in the pathogenesis of highly pathogenic avian influenza virus (HPAIV) H7N9 subtype in mammals and avian species is largely unknown. By functional analysis, we want to investigate critical amino acids that contribute to the host shutoff ability of the PA-X protein of the H7N9 virus in 293T cells