Project description:To investigate the function of FABP4 in the intestinal in vitro cultured organoids,FABP4, which located in crypt lyszyme+ Paneth cells can regulate the expression of defensins, especially HFD-mediated downregulation of defensin in Paneth cells will provide insights into factor(s) underlying modern diseases. We then performed gene expression profiling analysis using data obtained from RNA-seq of FABP4fl/flpvillinCreT (FABP4KO) mice and FABP4fl/fl (WT)mice in vitro cultured intestinal organoids.
Project description:Inappropriate cross talk between mammals and their gut microbiota may trigger intestinal inflammation and drive extra-intestinal immune-mediated diseases. Studies with germ-free or gnotobiotic animals represent the gold standard for research on bacterial-host interaction but they are not readily accessible to the wide scientific community. We aimed at refining a protocol that in a robust manner would deplete murine intestinal microbiota and prove to have significant biologic validity. Previously published protocols for depleting mice of their intestinal microbiota by administering broad-spectrum antibiotics in drinking water were difficult to reproduce. We show that twice daily delivery of antibiotics by gavage depleted mice of their cultivable fecal microbiota and reduced the fecal bacterial DNA load by approximately 400 fold while ensuring the animals’ health. Mice subjected to the protocol for 17 days displayed enlarged ceca, reduced Peyer’s patches and small spleens. Antibiotic treatment significantly reduced the expression of antimicrobial factors and altered the expression of 517 genes in total in the colonic epithelium. Genes involved in cell cycle were significantly altered concomitant with reduced epithelial proliferative activity in situ assessed by Ki-67 expression, suggesting that commensal microbiota drives cellular proliferation in colonic epithelium. We present a robust protocol for depleting mice of their cultivatable intestinal microbiota with antibiotics by gavage and show that the biological effect of this depletion is phenotypic characteristics and epithelial gene expression profile similar to those of germ-free mice. Comparison of genome-wide gene expression of colon intestinal epithelial cells from mice subjected to microbiota depletion protocol against to control mice.
Project description:Gene expression profile of FABP4 treatment in RAW264.7 macrophages was examined to show a ligand (palmitic acid)-dependent and a ligand-independent effect of FABP4. RAW264.7 macrophages were treated with and without 200 nM recombinant FABP4 in the absence and presence of 0.2 mM palmitic acid.
Project description:Gene expression profile of FABP4 treatment in RAW264.7 macrophages was examined to show a ligand (palmitic acid)-dependent and a ligand-independent effect of FABP4.
Project description:Inappropriate cross talk between mammals and their gut microbiota may trigger intestinal inflammation and drive extra-intestinal immune-mediated diseases. Studies with germ-free or gnotobiotic animals represent the gold standard for research on bacterial-host interaction but they are not readily accessible to the wide scientific community. We aimed at refining a protocol that in a robust manner would deplete murine intestinal microbiota and prove to have significant biologic validity. Previously published protocols for depleting mice of their intestinal microbiota by administering broad-spectrum antibiotics in drinking water were difficult to reproduce. We show that twice daily delivery of antibiotics by gavage depleted mice of their cultivable fecal microbiota and reduced the fecal bacterial DNA load by approximately 400 fold while ensuring the animals’ health. Mice subjected to the protocol for 17 days displayed enlarged ceca, reduced Peyer’s patches and small spleens. Antibiotic treatment significantly reduced the expression of antimicrobial factors and altered the expression of 517 genes in total in the colonic epithelium. Genes involved in cell cycle were significantly altered concomitant with reduced epithelial proliferative activity in situ assessed by Ki-67 expression, suggesting that commensal microbiota drives cellular proliferation in colonic epithelium. We present a robust protocol for depleting mice of their cultivatable intestinal microbiota with antibiotics by gavage and show that the biological effect of this depletion is phenotypic characteristics and epithelial gene expression profile similar to those of germ-free mice.
Project description:Using single cell RNAseq assay, we examine the effect of acute diet-swtiching on the transcriptomic profiles of various intestinal epithelial cells.
Project description:To determine the effect of prohibitin overexpression on global gene expression in Caco2-BBE intestinal epithelial cells. 4 individual wells of Caco2-BBE cells, passage 41, were transfected with either empty vector (pcDNA4) or prohibitin/pcDNA4 for 72 hours. Total RNA isolated from 4 wells of cells/per treatment were pooled together for labeling and hybridization purposes.
Project description:Fatty acid-binding protein 4 (FABP4) plays an essential role in metabolism and inflammatory. However, the role of FABP4 in alcoholic steatohepatitis (ASH) remains unclear. This study aimed to investigate the function of FABP4 and the underlying mechanisms in the progression of ASH.