Project description:Food processing conditions affect the structure, solubility and therefore accurate detection of gluten proteins. We investigated the influence of dough, bread and pretzel making on the composition of different wheat protein fractions obtained by Osborne fractionation, which is based on solubility. The albumin/globulin (ALGL), gliadin and glutenin fractions from flour, dough, crispbread, bread and pretzel were analysed using RP-HPLC, SDS-PAGE and untargeted nanoLC-MS/MS. This approach enabled an in-depth profiling of the fractionated proteomes and related compositional changes to processing conditions including mixing, heat and alkali treatment. The ALGL fractions contained 71 protein groups, the gliadin fractions 27 and the glutenin fractions 47, of which 16 were common in all fractions. Label-free quantitation revealed that the relative abundances of 78 proteins were significantly affected by baking in the fractions of bread crumb and bread crust in comparison to flour.
Project description:Frozen dough baking is useful method in the modern bread-making industry. However, the fermentation activity of baker’s yeast dramatically decreased after thawing due to freeze injuries, because baker’s yeast cells contained in dough experience freeze injuries during freeze-thaw processes. Here, we performed genome-wide expression analysis to determine genetic response in baker’s yeasts under freeze-thaw condition using a DNA microarray analysis. Functional and clustering analyses in gene expression reveal that genes could be characterized by the term of freeze-thaw stress. Under short-term freeze stress (freeze treatment for 3 day), genes involved in ribosomal protein were up-regulated. Under long-term freeze stress (freeze treatment for longer than 7 day), genes involved in energy synthesis were up-regulated. In each phase, genes involved in protein damage, several stresses and trehalose and glycogen metabolism were also up-regulated. Through these freeze stress, yeast cells may improve reduced efficiency of translation and enhanced cell protection mechanism to survive under freeze stress condition. These regulations of these genes would be controlled by the cAMP-protein kinase A pathway. Keywords: baker’s yeast, freeze-thaw stress, gene expression, freezing period
Project description:The high molecular weight (HMW) subunits of wheat glutenin are synthesised only in the starchy endosperm tissue of the developing wheat grain. We studied the effect of introducing transgenes on the global gene expression profiles of selected transgenic wheat lines, particularly during wheat seed development. For these particular set of experiments a direct comparison between the hexaploid bread transgenic line B102,1-1 (Rooke, L., Steele, S.H., Barcelo, P.,Shewry, P.R. & Lazzeri,P. Transgene inheritance, segregation and expression in bread wheat. Euphytica 129, 301-309 (2003)) and it background, non transformed L88-31 wheat line (Lawrence,G.J., Macritchie, F. & Wrigley, C.W. Dough and baking quality of wheat lines in glutenin subunits controlled by Glu-A1, Glu-B1 and Glu-D1 loci. J. Cereal. Sci. 7,109-112 (1988)) was performed. Transcriptome comparison analysis was performed in endosperm tissue (14 and 28 days post anthesis-dpa) and in leaf tissue (8 days post germination ?dpg). The transcriptome comparisons analysis was performed using three biological replicates (i.e. per line/tissue /developmental stage selected). Hybridisations were performed in reverse dye labelling.
Project description:Frozen dough baking is useful method in the modern bread-making industry. However, the fermentation activity of bakerâs yeast dramatically decreased after thawing due to freeze injuries, because bakerâs yeast cells contained in dough experience freeze injuries during freeze-thaw processes. Here, we performed genome-wide expression analysis to determine genetic response in bakerâs yeasts under freeze-thaw condition using a DNA microarray analysis. Functional and clustering analyses in gene expression reveal that genes could be characterized by the term of freeze-thaw stress. Under short-term freeze stress (freeze treatment for 3 day), genes involved in ribosomal protein were up-regulated. Under long-term freeze stress (freeze treatment for longer than 7 day), genes involved in energy synthesis were up-regulated. In each phase, genes involved in protein damage, several stresses and trehalose and glycogen metabolism were also up-regulated. Through these freeze stress, yeast cells may improve reduced efficiency of translation and enhanced cell protection mechanism to survive under freeze stress condition. These regulations of these genes would be controlled by the cAMP-protein kinase A pathway. Experiment Overall Design: All experiments were done in duplicate from two independent samples.
Project description:The high molecular weight (HMW) subunits of wheat glutenin are synthesised only in the starchy endosperm tissue of the developing wheat grain. We compared the expressed genomes of the transgenic wheat line B102,1-1 (Rooke et al. Transgene inheritance, segregation and expression in bread wheat. Euphytica 129, 301-309 (2003)). Both lines were shown to express the HMW-GS Ax1 gene (Halford, N.G. et al. Analysis of HMW glutenin subunits encoded bychromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl Genet 83, 373-378 (1992).) to the expressed genome of conventionally bred wheat line L88-18 (Lawrence et al. Dough and baking quality of wheat lines in glutenin subunits controlled by Glu-A1, Glu-B1 and Glu-D1 loci. J. Cereal. Sci. 7,109-112 (1988)) which results in the same effects on traits. Transcriptomes comparison analysis was performed in endosperm tissue (14 and 28 days post anthesis-dpa) and in leaf tissue (8 days post germination dpg), respectively. Each of the transcriptome comparisons was performed using three biological replicates (i.e. per line/tissue /developmental stage selected). Hybridisations were performed in reverse dye labelling.Exceptionally, biological replica 2 was only performed for B102,1-1 (green)/L88-18 (red) labelling and not swap