Project description:To further explore potential molecular mechanisms and pathways by which the presence or absence of the pGKT2 plasmid may be affecting the overall fitness cost in the native Gordonia sp KTR9 strain, transcriptome studies were performed. Transcriptome experiments comparing KTR9 wild-type and mutant strains grown in rich media confirmed the loss of the pGKT2 plasmid and also indicated the loss of the 90 kb pGKT1 plasmid.
Project description:To further explore potential molecular mechanisms and pathways by which the presence or absence of the pGKT2 plasmid may be affecting the overall fitness cost in a transconjugant Rhodococcus jostii RHA1 strain, transcriptome studies were performed. Transcriptome experiments comparing RHA1 wild-type and RHA1 transconjugant strains grown in rich media confirmed the presence of the pGKT2 plasmid.
Project description:Test whether it is possible to conjugate a whole plasmid library into a recipient strain without loss of fidelity (as judged by aCGH analysis)
Project description:Related surrogate species are often used to study the molecular basis of pathogenicity of a pathogen on the basis of a shared set of biological features generally attributable to a shared core genome consisting of orthologous genes. An important and understudied aspect, however, is the extent to which regulatory features affecting the expression of such shared genes are present in both species. Here we report on an analysis of whole transcriptome maps for an important member of the TB complex Mycobacterium bovis and a closely related model organism for studying mycobacterial pathogenicity Mycobacterium marinum.
Project description:<p>Gut environments harbour dense microbial ecosystems in which plasmids are widely distributed. Plasmids facilitate the exchange of genetic material among microorganisms while enabling the transfer of a diverse array of accessory functions. However, their precise impact on microbial community composition and function remains largely unexplored. Here we identify a prevalent bacterial toxin and a plasmid-encoded resistance mechanism that mediates the interaction between Lactobacilli and Enterococci. This plasmid is widespread across ecosystems, including the rumen and human gut microbiota. Biochemical characterization of the plasmid revealed a defence mechanism against reuterin, a toxin produced by various gut microbes, such as Limosilactobacillus reuteri. Using a targeted metabolomic approach, we find reuterin to be prevalent across rumen ecosystems with impacts on microbial community structure. Enterococcus strains carrying the protective plasmid were isolated and their interactions with L. reuteri, the toxin producer, were studied in vitro. Interestingly, we found that by conferring resistance against reuterin, the plasmid mediates metabolic exchange between the defending and the attacking microbial species, resulting in a beneficial relationship or mutualism. Hence, we reveal here an ecological role for a plasmid-coded defence system in mediating a beneficial interaction. </p>