Project description:To characterize the genetic basis of hybrid male sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven M-bM-^@M-^Xhotspots,M-bM-^@M-^Y seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL - but not cis eQTL - were substantially lower when mapping was restricted to a M-bM-^@M-^XfertileM-bM-^@M-^Y subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. Gene expression was measured in whole testis in males aged 70(M-BM-15) days. Samples include 294 WSB/EiJ x PWD/PhJ F2s, 11 PWD/PhJ x WSB/EiJ F2s, 8 WSB/EiJ, 8 PWD/PhJ, 6 PWD/PhJ x WSB/EiJ F1s and 4 WSB/EiJ x PWD/PhJ F1s.
Project description:The genome of classical laboratory strains of mice is an artificial mosaic of genomes originated from several mouse subspecies with predominant representation (>90%) of the Mus m. domesticus component. Mice of another subspecies, East European/Asian Mus m. musculus, can interbreed with the classical laboratory strains to generate hybrids with unprecedented phenotypic and genotypic variations. To study these variations in depth we prepared the first genomic large insert BAC library from an inbred strain derived purely from the Mus m. musculus-subspecies. The library will be used to seek and characterize genomic sequences controlling specific monogenic and polygenic complex traits, including modifiers of dominant and recessive mutations.A representative mouse genomic BAC library was derived from a female mouse of the PWD/Ph inbred strain of Mus m. musculus subspecies. The library consists of 144,768 primary clones from which 97% contain an insert of 120 kb average size. The library represents an equivalent of 6.7 x mouse haploid genome, as estimated from the total number of clones carrying genomic DNA inserts and from the average insert size. The clones were arrayed in duplicates onto eight high-density membranes that were screened with seven single-copy gene probes. The individual probes identified four to eleven positive clones, corresponding to 6.9-fold coverage of the mouse genome. Eighty-seven BAC-ends of PWD/Ph clones were sequenced, edited, and aligned with mouse C57BL/6J (B6) genome. Seventy-three BAC-ends displayed unique hits on B6 genome and their alignment revealed 0.92 single nucleotide polymorphisms (SNPs) per 100 bp. Insertions and deletions represented 0.3% of the BAC end sequences.Analysis of the novel genomic library for the PWD/Ph inbred strain demonstrated coverage of almost seven mouse genome equivalents and a capability to recover clones for specific regions of PWD/Ph genome. The single nucleotide polymorphism between the strains PWD/Ph and C57BL/6J was 0.92/100 bp, a value significantly higher than between classical laboratory strains. The library will serve as a resource for dissecting the phenotypic and genotypic variations between mice of the Mus m. musculus subspecies and classical laboratory mouse strains.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Cancers predominantly arise from adult stem cells accumulating somatic driver mutations, but how genetic predisposition affects the penetrance of mutations in tumor initiation is not well understood. Here, we have analyzed gene expression in tumor-prone ApcMin/+ mice on highly variant C57BL/6J and PWD/Ph genetic backgrounds. We show that activation of beta-Catenin-driven and stem cell-specific gene expression in the presence of ApcMin or following APC loss is high in B6 mouse intestines, but remains moderate in intestines carrying PWD/Ph chromosome 5, suggesting that PWD/Ph variants restrict adenoma initiation by controlling stem cell homeostasis. Gene expression of modifier candidates and DNA methylation on chromosome 5 are predominantly cis-controlled and largely reflect the parental patterns, providing a genetic basis for inheritance of tumor susceptibility.
Project description:Cancers predominantly arise from adult stem cells accumulating somatic driver mutations, but how genetic predisposition affects the penetrance of mutations in tumor initiation is not well understood. Here, we have analyzed gene expression in tumor-prone ApcMin/+ mice on highly variant C57BL/6J and PWD/Ph genetic backgrounds. We show that activation of beta-Catenin-driven and stem cell-specific gene expression in the presence of ApcMin or following APC loss is high in B6 mouse intestines, but remains moderate in intestines carrying PWD/Ph chromosome 5, suggesting that PWD/Ph variants restrict adenoma initiation by controlling stem cell homeostasis. Gene expression of modifier candidates and DNA methylation on chromosome 5 are predominantly cis-controlled and largely reflect the parental patterns, providing a genetic basis for inheritance of tumor susceptibility.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:A LINE-1 element, LIC105, was found in the Mus musculus domesticus inbred strain, C57BL/6J. Upon sequencing, this element was found to belong to a M. spretus LINE-1 subfamily originating within the last 0.2 million years. This is the second spretus-specific LINE-1 subfamily found to be represented in C57BL/6J. Although it is unclear how these M. spretus LINE-1s transferred from M. spretus to M. m. domesticus, it is now clear that at least two different spretus LINE-1 sequences have recently transferred. The limited divergence between the C57BL/6J spretus-like LINE-1s and their closest spretus ancestors suggests that the transfer did not involve an exceptionally long lineage of sequential transpositions.