Project description:With the aid of a biochip, carrying representative sequences from approximately 2200 sequences from the genome of isolate 9a5c from X. fastidiosa (Xf), microarray-based comparisons have been performed with 8 different Xf isolates obtained from coffee plants.
2013-12-31 | GSE41163 | GEO
Project description:microbial diversity rhizosphere and coffee fermentation
Project description:The intermediate seed category was defined in the early 1990s using coffee (Coffea arabica) as a model. In contrast to orthodox seeds, intermediate seeds cannot survive complete drying, which is a major constraint for seed storage, for both biodiversity conservation and agricultural purposes. However, intermediate seeds are considerably more tolerant to drying than recalcitrant seeds, which are highly sensitive to desiccation. To gain insight into the mechanisms governing such differences, changes in desiccation tolerance (DT), hormone content and the transcriptome were analysed in developing coffee seeds. Acquisition of DT coincided with a dramatic transcriptional switch characterised by the repression of primary metabolism, photosynthesis and respiration, and the upregulation of genes coding for late embryogenesis abundant (LEA) proteins, heat shock proteins (HSP) and antioxidant enzymes. Analysis of heat-stable proteome in the mature coffee seed confirmed the accumulation of LEA proteins identified at the transcript level. Transcriptome analysis also suggests a major role for ABA and for the transcription factors CaHSFA9, CaDREB2G, CaANAC029, CaPLATZ and CaDOG-like in DT acquisition. The ability of CaHSFA9 and CaDREB2G to trigger HSP gene transcription was validated by Agrobacterium-mediated transformation of coffee somatic embryos.
Project description:Pulses are an important food and are consumed as a sustainable source of plant-based proteins. The demand for pulse proteins is continuously increasing due to their nutritional, economic, and ecological values. Although pulse proteins provide many health benefits, they have limitations in terms of sensory attributes and anti-nutritional factors. To overcome these challenges, fermentation technology has been explored as a natural food processing method, as it has the potential to enhance the techno-functional qualities, sensory attributes, and nutritional value of the products. Spontaneous fermentation is a natural process in which the native microbial population grows in the substrate without the addition of specific microbes or spores. There is a knowledge gap regarding proteomic changes that occur during the spontaneous fermentation of legumes. The current study utilized mass spectrometry-based proteomics to investigate the effects of spontaneous fermentation on three different pulse protein isolates (chickpea, faba bean, and lentils).