Project description:Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are strongly influenced by inherited genetic variation, but environmental and epigenetic factors also play key roles in the course of these diseases. A hexanucleotide repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of ALS and FTD. To determine the cellular alterations associated with the C9 repeat expansion, we performed single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem samples of motor and frontal cortices from C9-ALS and C9-FTD donors. We found pervasive alterations of gene expression across multiple cortical cell types in C9-ALS, with the largest number of affected genes in astrocytes and excitatory neurons. Astrocytes increased expression of markers of activation and pathways associated with structural remodeling. Excitatory neurons in upper and deep layers increased expression of genes related to proteostasis, metabolism, and protein expression, and decreased expression of genes related to neuronal function. Epigenetic analyses revealed concordant changes in chromatin accessibility, histone modifications, and gene expression in specific cell types. C9-FTD patients had a distinct pattern of changes, including loss of neurons in frontal cortex and altered expression of thousands of genes in astrocytes and oligodendrocyte-lineage cells. Overall, these findings demonstrate a context-dependent molecular disruption in C9-ALS and C9-FTD, resulting in distinct effects across cell types, brain regions, and disease phenotypes.
Project description:Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are strongly influenced by inherited genetic variation, but environmental and epigenetic factors also play key roles in the course of these diseases. A hexanucleotide repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of ALS and FTD. To determine the cellular alterations associated with the C9 repeat expansion, we performed single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem samples of motor and frontal cortices from C9-ALS and C9-FTD donors. We found pervasive alterations of gene expression across multiple cortical cell types in C9-ALS, with the largest number of affected genes in astrocytes and excitatory neurons. Astrocytes increased expression of markers of activation and pathways associated with structural remodeling. Excitatory neurons in upper and deep layers increased expression of genes related to proteostasis, metabolism, and protein expression, and decreased expression of genes related to neuronal function. Epigenetic analyses revealed concordant changes in chromatin accessibility, histone modifications, and gene expression in specific cell types. C9-FTD patients had a distinct pattern of changes, including loss of neurons in frontal cortex and altered expression of thousands of genes in astrocytes and oligodendrocyte-lineage cells. Overall, these findings demonstrate a context-dependent molecular disruption in C9-ALS and C9-FTD, resulting in distinct effects across cell types, brain regions, and disease phenotypes.
Project description:Dysregulation of RNA processing contributes to neurodegenerative diseases, especially amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Expansion of an intronic (GGGGCC)n repeat within the C9ORF72 gene is the most common cause of both FTD and ALS (C9-FTD/ALS), characterized with aberrant repeat RNA foci in the nucleus and noncanonical translation-produced dipeptide repeat (DPR) protein inclusions in the cytoplasm. Here we elucidate that the (GGGGCC)n repeat RNA co-localizes with nuclear speckles and alters their phase separation properties and granule dynamics. Moreover, the essential nuclear speckle scaffold protein SRRM2 is sequestered into the poly-GR cytoplasmic inclusions in C9-FTD/ALS mouse model and patient postmortem tissues, exacerbating the nuclear speckle dysfunction. Impaired nuclear speckle integrity induces global exon-skipping and intron retention in human iPSC-derived neurons. Similar alternative splicing changes can be found in patient postmortem tissues. This work identified novel molecular mechanism of global RNA splicing defects by impaired nuclear speckle function in C9-FTD/ALS and revealed novel potential biomarkers or therapeutic targets.
Project description:Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of a clinical, pathological and genetic continuum. The purpose of the present study was to assess the mutation burden that is present in ALS and/or FTD known disease-causing genes in 54 patients (16 with available postmortem neuropathological diagnosis) with concurrent ALS and FTD (ALS/FTD) not-carrying the C9orf72 hexanucleotide repeat expansion, the most important genetic cause in both diseases.
Project description:Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of a clinical, pathological and genetic continuum. The purpose of the present study was to assess the mutation burden that is present in ALS and/or FTD known disease-causing genes in 54 patients (16 with available postmortem neuropathological diagnosis) with concurrent ALS and FTD (ALS/FTD) not-carrying the C9orf72 hexanucleotide repeat expansion, the most important genetic cause in both diseases.
Project description:A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Human imaging and experimental studies hint at early changes in the brain in C9-ALS/FTD, which remain poorly understood. To define these changes, we used cerebral organoid models derived from C9-ALS/FTD patients and controls to create a single cell RNA sequencing dataset at day 90. Together, these dataset will help to shed light on initial pathologies crucial for understanding disease onset and the design of therapeutic strategies.
Project description:While deleterious mutations are responsible for the vast majority of TBK1-linked ALS/FTD cases, the ALS/FTD causing missense mutation p.E696K leads to a selective loss of TBK1/optineurin binding. Knock-in of this specific missense mutation causes progressive autophagolysosomal dysfunction and an ALS/FTD-like phenotype in mice, while, as opposed to TBK1 deletion, RIPK/TNF-α-dependent necroptosis or overt inflammation are absent. Our results highlight the role of autophagolysosomal dysfunction as a therapeutic target in TBK1-ALS/FTD.
Project description:Triggers of innate immune signaling in the CNS of amyotrophic lateral sclerosis and frontotemporal degeneration (ALS/FTD) patients remain elusive. We report the presence of cytoplasmic double-stranded RNA (cdsRNA), an established trigger of innate immunity, in ALS-FTD brains carrying C9ORF72 intronic hexanucleotide expansions that included genomically encoded expansions of the G4C2 repeat sequences. Presence of cdsRNA in human brains was coincident with cytoplasmic TDP-43 inclusions, a pathologic hallmark of ALS/FTD. Introducing cdsRNA into cultured human neural cells induced Type I interferon (IFN-I) signaling and death that was rescued by FDA-approved JAK inhibitors. In mice, genomically encoded dsRNAs expressed exclusively in a neuronal class induced IFN-I and death in connected neurons non-cell autonomously. Our findings establish that genomically encoded cdsRNAs trigger sterile, viral-mimetic IFN-I induction, and propagated death within neural circuits and may drive neuroinflammation and neurodegeneration in ALS/FTD patients.
Project description:ATAC-seq was utilized to profile the chromatin status in ALS/FTD patient cells carrying the hexanuleotide repeat expansion in C9orf72.