Project description:The lungs of mice inoculated with H1N1 were harvested at day 7. The DAPI- lung cells were loaded into a 10x Genomics microfluidics chip and encapsulated with barcoded oligo-dT-containing gel beads using the 10x Genomics Chromium controller using v3 kit according to the manufacturer's instructions.
Project description:WT mice and claudin 4 KO mice were exposed to ventilator-induced lung injury (VILI) for 2 hours. We found that in some Cldn4 KO mice, injury was similar to WT, while in others, injury was higher, as assessed by amount of protein leak into broncho-alveolar lavage fluid. We performed RNAseq to find which genes were responsible for higher injury in Cldn4 KO mice. WT mice and claudin 4 KO mice were exposed to ventilator-induced lung injury (VILI) for 2 hours. RNA were extracted from whole lungs and RNA sequencing was performed. The samples are (all in duplicates): WT no VILI, Cldn4 KO no VILI, WT VILI, Cldn4 KO VILI with similar injury to WT (Cldn4 KOlow), and Cldn4 KO VILI with higher injury than WT (Cldn4 KOhigh)
Project description:WT mice and claudin 4 KO mice were exposed to ventilator-induced lung injury (VILI) for 2 hours. We found that in some Cldn4 KO mice, injury was similar to WT, while in others, injury was higher, as assessed by amount of protein leak into broncho-alveolar lavage fluid. We performed RNAseq to find which genes were responsible for higher injury in Cldn4 KO mice.
Project description:Yangyinqingfei Decoction (YYQFD), a traditional Chinese prescription, is well known in the treatment of diphtheria and lung-related diseases in clinic. However, the underlying mechanism how to treat lung-related diseases remains unclear. In the present study, the intervention effect of YYQFD on PM2.5-induced lung injury mice and its potential mechanism were investigated by metabolomics and proteomic techniques. The results showed that YYQFD could significantly improve pulmonary functions, relieve lung injury, as well as reduce IL-6, TNF-α and MDA, and increase SOD levels in serum and BALF of PM2.5-induced lung injury mice. Furthermore, the protein-metabolite joint analysis presented that YYQFD regulated the pathways of arachidonic acid metabolism, linoleic acid metabolism, and biosynthesis of unsaturated fatty acids with significantly down-regulating arachidonic acid, 20-HETE, prostaglandin E2, lecithin, linoleic acid, α-linolenic acid, eicosatetraenoic acid, and γ-linolenic acid, and up-regulating PTGES2, GPX2 and CBR3 protein expressions in lung tissue. A regulatory metabolic network map was further constructed, which provide us a better understanding about the role of YYQFD on PM2.5-induced lung injury mice and new insight into YYQFD application for the treatment of lung-related diseases.
Project description:The etiology of trauma-hemorrhage shock-induced acute lung injury has been difficult to elucidate due, at least in part, to the inability of in vivo studies to separate the non-injurious pulmonary effects of trauma-hemorrhage from the tissue injurious ones. To circumvent this in vivo limitation, we utilized a model of trauma-hemorrhagic shock (T/HS) in which T/HS-lung injury was abrogated by dividing the mesenteric lymph duct. In this way, it was possible to separate the pulmonary injurious response from the non-injurious systemic response to T/HS by comparing the pulmonary molecular response of rats subjected to T/HS which did and did not develop lung injury as well as to non-shocked rats. Utilizing high-density oligonucleotide arrays and treatment group comparisons of whole lung tissue collected at 3 hours after the end of the shock or sham-shock period, 139 of the 8,799 assessed genes were differentially expressed. Experiment Overall Design: Four groups of rats (n=3) were studied in order to identify changes in pulmonary gene expression associated with T/HS, both in the presence and absence of lung injury. These included trauma-sham shock (T/SS) rats which had a laparotomy (trauma) but were not subjected to hemorrhagic shock. These rats had no lung injury and served as controls for rats which were subjected to T/HS (laparotomy plus 90 min of shock) and had lung injury. Differences in gene expression between these two groups would represent both the effects of hemorrhagic shock as well as lung injury. To distinguish the gene response of hemorrhagic shock from the gene response associated with lung injury, gene expression was also compared between T/HS rats (hemorrhage and lung injury) and rats subjected to T/HS plus lymph duct ligation (T/HS-LDL), since the T/HS-LDL rats experienced hemorrhagic shock but had no measurable lung injury. Lastly, to identify hemorrhagic shock- modified genes, the pulmonary gene response of T/HS-LDL (hemorrhage without lung injury) were compared to rats subjected to T/SS plus LDL (no hemorrhage or lung injury). Three hours after the end of the 90 min shock or sham-shock period (i.e. 4.5 hrs after the induction of T/HS), the rats were sacrificed and specimens harvested for genechip analysis and histology.
Project description:Background: Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/ mitogen activated protein kinase kinase-3 and c-Jun-NH2-terminal kinase-1 in ventilator-induced lung injury and investigate novel independent mechanisms contributing to lung injury during mechanical ventilation. Methodology and Principle Findings: C57/BL6 wild-type mice and mice genetically deleted for mitogen-activated protein kinase kinase-3 (mkk-3-/-) or c-Jun-NH2-terminal kinase-1 (jnk1-/-) were ventilated, and lung injury parameters were assessed. We demonstrate that mkk3-/- or jnk1-/- mice displayed significantly reduced inflammatory lung injury and apoptosis relative to wild-type mice. Since jnk1-/- mice were highly resistant to ventilator-induced lung injury, we performed comprehensive gene expression profiling of ventilated wild-type or jnk1-/- mice to identify novel candidate genes which may play critical roles in the pathogenesis of ventilator-induced lung injury. Microarray analysis revealed many novel genes differentially expressed by ventilation including matrix metalloproteinase-8 (MMP8) and GADD45a. Functional characterization of MMP8 revealed that mmp8-/- mice were sensitized to ventilator-induced lung injury with increased lung vascular permeability. Conclusions: We demonstrate that mitogen-activated protein kinase pathways mediate inflammatory lung injury during ventilator-induced lung injury. C-Jun-NH2-terminal kinase was also involved in alveolo-capillary leakage and edema formation, whereas MMP8 inhibited alveolo-capillary protein leakage. Keywords: response to injury, genetically modified mouse