Project description:Leaves are colonised by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognised as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray-inoculated with diverse leaf-colonising bacteria. Whole transcriptome sequencing revealed that four days after inoculation, leaf transcriptional changes to colonisation by non-pathogenic and pathogenic bacteria differed in strength but not in the type of response.
Project description:Leaves are colonised by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognised as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray-inoculated with diverse leaf-colonising bacteria. Whole transcriptome sequencing revealed that four days after inoculation, leaf transcriptional changes to colonisation by non-pathogenic and pathogenic bacteria differed in strength but not in the type of response. Inoculation of plants with different densities of the non-pathogenic bacterium Williamsia sp. Leaf354 showed that high bacterial titers caused disease phenotypes and led to severe transcriptional reprogramming with a strong focus on plant defence. This SuperSeries is composed of the SubSeries listed below.
Project description:A total of 18 libraries from Setaria viridis were constructed using the Illumina TruSeq sample preparation method. We used two biological replicate libraries from the leaf, whole panicles (inside leaf sheath), whole panicles (coming out of leaf sheath), whole panicles (completely out of leaf sheath), whole panicles (completely out of leaf sheath, after pollination), spikelet (inside leaf sheath), spikelet (coming out of leaf sheath), and spikelet (completely out of leaf sheath).
2018-07-28 | GSE111490 | GEO
Project description:Bacteria colonizing leaf lamina and leaf acumen of Dioscorea bulbifera
| PRJNA562285 | ENA
Project description:Bacteria symbionts of Cassidinae leaf beetles
Project description:Elevated CO2 (eCO2) has an influence on developing leaf growth of rice (Oryza sativa cv. Nipponbare), specifically lower growth stage than P4 (plastochron number), resulting in decrease in leaf size compared with that in ambient CO2 (aCO2). Since several micro RNAs are associated with the regulation of plant leaf development, in order to clarify which micro RNAs are involved in the decrease of leaf blade size at eCO2, we carried out high-throughput small RNA sequencing analysis and compared the amount of identified miRNAs in developing rice leaf blade grown between aCO2 and eCO2 condition.