Project description:Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyzes the final committed step in triacylglycerol biosynthesis in eukaryotes. In microalgae, the copy number of DGAT genes is extraordinarily expanded, yet the functions of many DGATs remain largely unknown. This study revealed that microalgal DGAT can function as a lysophosphatidic acyltransferase (LPAAT) both in vitro and in vivo while losing its original function as DGAT. Among the five DGAT-encoding genes identified and cloned from the green microalga Haematococcus pluvialis, four encoded HpDGATs that showed triacylglycerol synthase activities in yeast functional complementation analyses; the exception was one of the type II DGAT encoding genes, HpDGTT2. The hydrophobic recombinant HpDGTT2 protein was purified in soluble form and was found to function as a LPAAT via enzymatic assay. Introducing this gene into the green microalga Chlamydomonas reinhardtii led to retarded cellular growth, enlarged cell size, and enhanced triacylglycerol accumulation, identical to the phenotypes of transgenic strains overexpressing CrLPAAT. This study provides a framework for dissecting uncharacterized DGATs, and could pave the way to decrypting the structure-function relationship of this large group of enzymes that are critical to lipid biosynthesis.
Project description:In most eukaryotes, subtelomeres are dynamic genomic regions populated by multi-copy sequences of different origins, which can promote segmental duplications and chromosomal rearrangements. However, their repetitive nature has complicated the efforts to sequence them, analyse their structure and infer how they evolved. Here, we use recent genome assemblies of Chlamydomonas reinhardtii based on long-read sequencing to comprehensively describe the subtelomere architecture of the 17 chromosomes of this model unicellular green alga. We identify three main repeated elements present at subtelomeres, which we call Sultan, Subtile and Suber, alongside three chromosome extremities with ribosomal DNA as the only identified component of their subtelomeres. The most common architecture, present in 27 out of 34 subtelomeres, is a heterochromatic array of Sultan elements adjacent to the telomere, followed by a transcribed Spacer sequence, a G-rich microsatellite and transposable elements. Sequence similarity analyses suggest that Sultan elements underwent segmental duplications within each subtelomere and rearranged between subtelomeres at a much lower frequency. Analysis of other green algae reveals species-specific repeated elements that are shared across subtelomeres, with an overall organization similar to C. reinhardtii. This work uncovers the complexity and evolution of subtelomere architecture in green algae.
Project description:Endogenous small RNAs function in RNA interference (RNAi) pathways to control gene expression through mRNA cleavage, translational repression, or chromatin modification. Plants and animals contain many microRNAs (miRNAs) that play vital roles in development, including helping to specify cell type and tissue identity. To date, no miRNAs have been reported in unicellular organisms. Here we show that Chlamydomonas reinhardtii, a unicellular green alga, encodes many miRNAs. We also show that a Chlamydomonas miRNA can direct the cleavage of its target mRNA in vivo and in vitro. We further show that the expression of some miRNAs/Candidates increases or decreases during Chlamydomonas gametogenesis. In addition to miRNAs, Chlamydomonas harbors other types of small RNAs including phased small interfering RNAs (siRNAs) that are reminiscent of plant trans-acting siRNAs, as well as siRNAs originating from protein-coding genes and transposons. Our findings suggest that the miRNA pathway and some siRNA pathways are ancient mechanisms of gene regulation that evolved prior to the emergence of multicellularity.
Project description:Chlamydomonas reinhardtii is a model system for studying cilia, photosynthesis, and other core features of eukaryotes, and is also an emerging source of biofuels. Despite its importance to basic and applied biological research, the level and pattern of genetic variation in this haploid green alga has yet to be characterized on a genome-wide scale. To improve understanding of C. reinhardtii's genetic variability, we generated low coverage whole genome resequencing data for nearly all of the available isolates of this species, which were sampled from a number of sites in North America over the past ∼70 years. Based on the analysis of more than 62,000 single nucleotide polymorphisms, we identified two groups of isolates that represent geographical subpopulations of the species. We also found that measurements of genetic diversity were highly variable throughout the genome, in part due to technical factors. We studied the level and pattern of linkage disequilibrium (LD), and observed one chromosome that exhibits elevated LD. Furthermore, we detected widespread evidence of recombination across the genome, which implies that outcrossing occurs in natural populations of this species. In summary, our study provides multiple insights into the sequence diversity of C. reinhardtii that will be useful to future studies of natural genetic variation in this organism.
Project description:BackgroundMicroalgae have received considerable interest as a source of biofuel production. The unicellular green alga Pseudochoricystis ellipsoidea (non-validated scientific name) strain Obi appears to be suitable for large-scale cultivation in outdoor open ponds for biodiesel production because it accumulates lipids to more than 30 % of dry cell weight under nitrogen-depleted conditions. It also grows rapidly under acidic conditions at which most protozoan grazers of microalgae may not be tolerant. The lipid productivity of this alga could be improved using genetic engineering techniques; however, genetically modified organisms are the subject of regulation by specific laws. Therefore, the aim of this study was to develop a self-cloning-based positive selection system for the breeding of P. ellipsoidea.ResultsIn this study, uracil auxotrophic mutants were isolated after the mutagenesis of P. ellipsoidea using either ultraviolet light or a transcription activator-like effector nuclease (TALEN) system. The cDNA of the uridine monophosphate synthase gene (PeUMPS) of P. ellipsoidea was cloned downstream of the promoter of either a beta-tubulin gene (PeTUBULIN1) or the gene for the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (PeRBCS) to construct the pUT1 or pUT2 plasmid, respectively. These constructs were introduced into uracil auxotroph strains, and genetically complementary transformants were isolated successfully on minimal agar plates. Use of Noble agar as the solidifying agent was essential to avoid the development of false-positive colonies. It took more than 6 weeks for the formation of colonies of pUT1 transformants, whereas pUT2 transformants formed colonies in 2 weeks. Real-time PCR revealed that there were more PeUMPS transcripts in pUT2 transformants than in pUT1 transformants. Uracil synthesis (Ura(+)) transformants were also obtained using a gene cassette consisting solely of PeUMPS flanked by the PeRBCS promoter and terminator.ConclusionsA self-cloning-based positive selection system for the genetic transformation of P. ellipsoidea was developed. Self-cloned P. ellipsoidea strains will require less-stringent containment measures for large-scale outdoor cultivation.
Project description:Chlorella vulgaris ITBBA3-12 has a role in the purification of the rubber processing wastewater. Its complete chloroplast genome contains 168369 bp, with a G + C content of 33.0%. A total of 147 genes were annotated, including 113 protein-coding genes, three rRNA (rrn23, rrn16, and rrn5) genes, and 31 tRNA genes. The significant feature of the chloroplast genome is that the genes encoding subunit V (petG), VI (petL), and apocytochrome f (petA) of the cytochrome b6/f complex are in triplicate, which was not observed in the other C. vulgaris strains. Phylogenetic analysis using the chloroplast genomes of Chlorophyta species indicated that ITBBA3-12 is closely related to C. vulgaris strain UTEX259 and NJ-7, and they clustered in the Chlorella lineage.
Project description:Introducing components of algal carbon concentrating mechanisms (CCMs) into higher plant chloroplasts could increase photosynthetic productivity. A key component is the Rubisco-containing pyrenoid that is needed to minimise CO2 retro-diffusion for CCM operating efficiency. Rubisco in Arabidopsis was re-engineered to incorporate sequence elements that are thought to be essential for recruitment of Rubisco to the pyrenoid, namely the algal Rubisco small subunit (SSU, encoded by rbcS) or only the surface-exposed algal SSU α-helices. Leaves of Arabidopsis rbcs mutants expressing 'pyrenoid-competent' chimeric Arabidopsis SSUs containing the SSU α-helices from Chlamydomonas reinhardtii can form hybrid Rubisco complexes with catalytic properties similar to those of native Rubisco, suggesting that the α-helices are catalytically neutral. The growth and photosynthetic performance of complemented Arabidopsis rbcs mutants producing near wild-type levels of the hybrid Rubisco were similar to those of wild-type controls. Arabidopsis rbcs mutants expressing a Chlamydomonas SSU differed from wild-type plants with respect to Rubisco catalysis, photosynthesis and growth. This confirms a role for the SSU in influencing Rubisco catalytic properties.
Project description:The molecular function of mTERFs (mitochondrial transcription termination factors) has so far only been described for metazoan members of the protein family and in animals they control mitochondrial replication, transcription and translation. Cells of photosynthetic eukaryotes harbour chloroplasts and mitochondria, which are in an intense cross-talk that is vital for photosynthesis. Chlamydomonas reinhardtii is a unicellular green alga widely used as a model organism for photosynthesis research and green biotechnology. Among the six nuclear C. reinhardtii mTERF genes is mTERF-like gene of Chlamydomonas (MOC1), whose inactivation alters mitorespiration and interestingly also light-acclimation processes in the chloroplast that favour the enhanced production of biohydrogen. We show here from in vitro studies that MOC1 binds specifically to a sequence within the mitochondrial rRNA-coding module S3, and that a knockout of MOC1 in the mutant stm6 increases read-through transcription at this site, indicating that MOC1 acts as a transcription terminator in vivo. Whereas the level of certain antisense RNA species is higher in stm6, the amount of unprocessed mitochondrial sense transcripts is strongly reduced, demonstrating that a loss of MOC1 causes perturbed mitochondrial DNA (mtDNA) expression. Overall, we provide evidence for the existence of mitochondrial antisense RNAs in C. reinhardtii and show that mTERF-mediated transcription termination is an evolutionary-conserved mechanism occurring in phototrophic protists and metazoans.
Project description:BACKGROUND:Acetabularia acetabulum is a giant unicellular green alga whose size and complex life cycle make it an attractive model for understanding morphogenesis and subcellular compartmentalization. The life cycle of this marine unicell is composed of several developmental phases. Juvenile and adult phases are temporally sequential but physiologically and morphologically distinct. To identify genes specific to juvenile and adult phases, we created two subtracted cDNA libraries, one adult-specific and one juvenile-specific, and analyzed 941 randomly chosen ESTs from them. RESULTS:Clustering analysis suggests virtually no overlap between the two libraries. Preliminary expression data also suggests that we were successful at isolating transcripts differentially expressed between the two developmental phases and that many transcripts are specific to one phase or the other. Comparison of our EST sequences against publicly available sequence databases indicates that ESTs from the adult and the juvenile libraries partition into different functional classes. Three conserved sequence elements were common to several of the ESTs and were also found within the genomic sequence of the carbonic anhydrase1 gene from A. acetabulum. To date, these conserved elements are specific to A. acetabulum. CONCLUSIONS:Our data provide strong evidence that adult and juvenile phases in A. acetabulum vary significantly in gene expression. We discuss their possible roles in cell growth and morphogenesis as well as in phase change. We also discuss the potential role of the conserved elements found within the EST sequences in post-transcriptional regulation, particularly mRNA localization and/or stability.