Project description:Head-on collisions between the DNA replication machinery and RNA polymerase are potent genotoxic events leading to replication fork stalling, R-loop formation, and DNA breaks. Current models suggest that head-on collisions are avoided through replication initiation site (RIS) placement upstream of active genes, thus ensuring co-orientation of replication fork movement and genic transcription. However, this model does not account for pervasive transcription units, or intragenic replication initiation events. Through mining phased GRO-seq data, and developing a rigorous informatic strategy to identify RIS, we demonstrate that head-on transcription occurs frequently in a breast cancer cell line, and that this transcription is significantly downregulated during S-phase, particularly in regions susceptible to R-loop formation. Collectively, our analysis suggests the existence of a temporally tuned transcriptional regulation mechanism that functions to maintain genome stability.
Project description:DNA replication in mammalian cells occurs in a defined temporal order during S phase, known as the replication timing programme. Replication timing is developmentally regulated and correlated with chromatin conformation and local transcriptional potential. Here we present RT profiles of unprecedented temporal resolution in two human embryonic stem cell lines, human colon carcinoma line HCT116 as well as F1 sub-species hybrid mouse embryonic stem cells and their neural progenitor derivatives. Strong enrichment of nascent DNA in fine temporal windows reveals a remarkable degree of cell to cell conservation in replication timing and patterns of replication genome-wide. We identify 5 patterns of replication in all cell types, consistent with varying degrees of initiation efficiency. Zones of replication initiation were found throughout S phase and resolved to ~50kb precision. Temporal transition regions were resolved into segments of uni-directional replication punctuated with small zones of inefficient initiation. Small and large valleys of convergent replication were consistent with either termination or broadly distributed initiation, respectively. RT correlated with chromatin compartment across all cell types but correlations of initiation time to chromatin domain boundaries and histone marks were cell type specific. Haplotype phasing revealed previously unappreciated regions of allele-specific and allele-independent asynchronous replication. Allele-independent asynchrony was associated with large transcribed genes that resemble common fragile sites. Altogether, these data reveal a remarkably deterministic temporal choreography of DNA replication in mammalian cells.
Project description:Head-on (HO) collisions between the DNA replication machinery and RNA polymerase over R-loop forming sequences (RLFS) are genotoxic, leading to replication fork blockage and DNA breaks. Current models suggest that HO collisions are avoided through replication initiation site (RIS) positioning upstream of active genes, ensuring co-orientation of replication fork movement and genic transcription. However, this model does not account for pervasive transcription, or intragenic RIS. Moreover, pervasive transcription initiation and CG-rich DNA is a feature of RIS, suggesting that HO transcription units (HO TUs) capable of forming R-loops might occur. Through mining phased GRO-seq data, and developing an informatics strategy to stringently identify RIS, we demonstrate that HO TUs containing RLFS occur at RIS in MCF-7 cells, and are downregulated at the G1/S phase boundary. Our analysis reveals a novel spatiotemporal relationship between transcription and replication, and supports the idea that HO collisions are avoided through transcriptional regulatory mechanisms.
Project description:Eukaryotic DNA replication initiates from multiple sites on each chromosome called replication origins. In the budding yeast Saccharomyces cerevisiae, origins are defined at discrete sites. Regular spacing and diverse firing characteristics of origins are thought to be required for efficient completion of replication, especially in the presence of replication stress. However, a S. cerevisiae chromosome III harboring multiple origin deletions has been reported to replicate relatively normally, and yet how an origin-deficient chromosome could accomplish successful replication remains unkown. To address this issue, we deleted seven well-characterized origins from chromosome VI, and found that thsese deletions do not cause gross growth defects even in the presence of replication inhibitors. We demonstrated that the origin deletions do cause a strong decrease in the binding of the origin recognition complex. Unexpectedly, replication profiling of this chromosome showed that DNA replication initiates from non-canonical loci around deleted origins in yeast. These results suggest that replication initiation can be unexpectedly flexible in this organism.
Project description:Full title: Complex patterns of genome accessibility discriminate sites of PcG repression, H4K16 acetylation and replication initiation Histone modifications have been proposed to regulate gene expression in part by modulating DNA accessibility and higher-order chromatin structure. However, there is limited direct evidence to support structural differences between euchromatic and heterochromatic fibers in the nucleus. To ask how histone modifications relate to chromatin compaction, we measured DNA accessibility throughout the genome by combining M.SssI methylase footprinting with methylated DNA immunoprecipitation (MeDIP-footprint). In the Drosophila genome, we find that accessibility to DNA methylase is variable in a manner that relates to the differential distribution of active and repressive histone modifications. Active promoters are highly permissive to M.SssI activity, yet inactive chromosomal domains decorated with H3 lysine 27 trimethylation are least accessible providing in vivo evidence for Polycomb-mediated chromatin compaction. Conversely, DNA accessibility is increased at active chromosomal regions marked with H4 lysine 16 acetylation and at the dosage-compensated male X chromosome suggesting that Drosophila transcriptional dosage compensation is facilitated by more permissive chromatin structure. Interestingly early replicating chromosomal regions and sites of replication initiation show also higher accessibility linking temporal and spatial control of genome duplication to the structural organization of chromatin. In conclusion, using a novel protocol we generated a comprehensive view of DNA accessibility and uncover different levels of chromatin organization, which are delineated by distinct patterns of posttranslational histone modifications and replication. Keywords: cell type comparison, ChIP-chip, MeDIP-footprint, RNA-seq, ChIP-seq
Project description:Full title: Complex patterns of genome accessibility discriminate sites of PcG repression, H4K16 acetylation and replication initiation Histone modifications have been proposed to regulate gene expression in part by modulating DNA accessibility and higher-order chromatin structure. However, there is limited direct evidence to support structural differences between euchromatic and heterochromatic fibers in the nucleus. To ask how histone modifications relate to chromatin compaction, we measured DNA accessibility throughout the genome by combining M.SssI methylase footprinting with methylated DNA immunoprecipitation (MeDIP-footprint). In the Drosophila genome, we find that accessibility to DNA methylase is variable in a manner that relates to the differential distribution of active and repressive histone modifications. Active promoters are highly permissive to M.SssI activity, yet inactive chromosomal domains decorated with H3 lysine 27 trimethylation are least accessible providing in vivo evidence for Polycomb-mediated chromatin compaction. Conversely, DNA accessibility is increased at active chromosomal regions marked with H4 lysine 16 acetylation and at the dosage-compensated male X chromosome suggesting that Drosophila transcriptional dosage compensation is facilitated by more permissive chromatin structure. Interestingly early replicating chromosomal regions and sites of replication initiation show also higher accessibility linking temporal and spatial control of genome duplication to the structural organization of chromatin. In conclusion, using a novel protocol we generated a comprehensive view of DNA accessibility and uncover different levels of chromatin organization, which are delineated by distinct patterns of posttranslational histone modifications and replication. Keywords: cell type comparison, ChIP-chip, MeDIP-footprint, RNA-seq, ChIP-seq MeDIP-footprint and ChIP-chip: ChIP-chip was performed for H3K4me3, H3K36me2, H3K36me3, H3K27me3, and H3K9me2 in Kc cells. We measured DNA accessibility throughout the genome by combining M.SssI methylase footprinting with methylated DNA immunoprecipitation (MeDIP-footprint) in Kc and S2 cells. RNA-seq: cDNA from RNA from Drosophila Kc cells was sequenced using Illumina deep sequencing. Reads were mapped and the abundance of all transcripts was determined. ChIP-seq: PSC ChIP from Drosophila Kc cells was sequenced using Illumina deep sequencing in three lanes. Reads were mapped and the binding profile of PSC was determined.
Project description:BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from genotoxicity and replication stress, but the mechanism(s) by which this is achieved remains elusive. Here, we provide evidence that BRCA2 acts as a critical suppressor of “head-on” transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified new origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNaseH2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results identify a new source of genomic instability caused by HO-TRCs in BRCA2-deficient ovarian cancer precursor cells, providing a new strategy in modulating HO-TRCs to enhance genomic instability
Project description:BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from genotoxicity and replication stress, but the mechanism(s) by which this is achieved remains elusive. Here, we provide evidence that BRCA2 acts as a critical suppressor of “head-on” transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified new origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNaseH2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results identify a new source of genomic instability caused by HO-TRCs in BRCA2-deficient ovarian cancer precursor cells, providing a new strategy in modulating HO-TRCs to enhance genomic instability
Project description:Genomic mapping of DNA replication origins (ORIs) in mammals provides a powerful means for understanding the regulatory complexity of our genome. Here we combine a genome-wide approach to identify preferential sites of DNA replication initiation at 0.4% of the mouse genome with detailed molecular analysis at distinct classes of ORIs according to their location relative to the genes. Our study reveals that 85% of the replication initiation sites in mouse embryonic stem (ES) cells are associated with transcriptional units. Nearly half of the identified ORIs map at promoter regions and, interestingly, ORI density strongly correlates with promoter density, reflecting the coordinated organisation of replication and transcription in the mouse genome. Detailed analysis of ORI activity showed that CpG island promoter-ORIs are the most efficient ORIs in ES cells and both ORI specification and firing efficiency are maintained across cell types. Remarkably, the distribution of replication initiation sites at promoter-ORIs exactly parallels that of transcription start sites (TSS) suggesting a co-evolution of the regulatory regions driving replication and transcription. Moreover, we found that promoter-ORIs are significantly enriched in CAGE tags derived from early embryos relative to all promoters. This association implies that transcription initiation early in development sets the probability of ORI activation unveiling a new hallmark in ORI efficiency regulation in mammalian cells. Two biological replicates of lambda-exonuclease treated short nascent strands (100-600 or 300-800 nt in length) were co-hybridised with genomic DNA from the same cells to tiled genomic array covering 10.1 Mb of the mouse genome (Agilent Technologies)
Project description:Eukaryotic DNA replication initiates from multiple sites on each chromosome called replication origins. In the budding yeast Saccharomyces cerevisiae, origins are defined at discrete sites. Regular spacing and diverse firing characteristics of origins are thought to be required for efficient completion of replication, especially in the presence of replication stress. However, a S. cerevisiae chromosome III harboring multiple origin deletions has been reported to replicate relatively normally, and yet how an origin-deficient chromosome could accomplish successful replication remains unkown. To address this issue, we deleted seven well-characterized origins from chromosome VI, and found that thsese deletions do not cause gross growth defects even in the presence of replication inhibitors. We demonstrated that the origin deletions do cause a strong decrease in the binding of the origin recognition complex. Unexpectedly, replication profiling of this chromosome showed that DNA replication initiates from non-canonical loci around deleted origins in yeast. These results suggest that replication initiation can be unexpectedly flexible in this organism. In this study, we aimed to establish an independent system to investigate how an origin-deficient chromosome is replicated. To this end, we systematically deleted seven well-characterized origins on the left arm of S. cerevisiae chromosome VI and analyzed (1) Orc2 localization during G2/M arrest and (2) BrdU incorporation during synchronous release from G1 arrest into S-phase, and compared the results to wild-type cell signals. For Orc2 ChIP-Chip experiments, Orc-bound DNA was isolated from Orc2-2Xlinker-3XFlag epitope-tagged cells arrested in G2/M using antibodies against Flag. For BrdU ChIP-Chip experiments, actively replicating DNA was isolated from cells harboring a single integrated BrdU incorporation vector released synchronously into 200mM HU using antibodies against BrdU. Immunoprecipitated and input (Orc2) or G1 (BrdU) DNA was then amplified and competitively hybridized to high-resolution strand-specific microarrays covering chromosomes III, VI, and XII.