Project description:In the past years, the research focus on the effects of microplastics (MP) on aquatic organisms extended from marine systems towards freshwater systems. An important freshwater model organism in the MP field is the cladoceran Daphnia, which plays a central role in lacustrine ecosystems and has been established as a test organism in ecotoxicology. To investigate the effects of MP on Daphnia magna, we performed a chronic exposure experiment with polystyrene MP under strictly standardized conditions. Chronic exposure of D. magna to PS microparticles led to a significant reduction in body length and number of offspring. To shed light on underlying molecular mechanisms induced by microplastic ingestion in D. magna, we assessed the effects of PS-MP at the proteomic level.
Project description:Fermenting microbial communities generate hydrogen: its removal through production of acetate, methane, or hydrogen sulfide modulates the efficiency of energy extraction from available nutrients in many ecosystems. We noted that pathway components for acetogenesis are more abundantly and consistently represented in the gut microbiomes of monozygotic twins and their mothers than components for methanogenesis or sulfate reduction, and subsequently analyzed the metabolic potential of two sequenced human gut acetogens, Blautia hydrogenotrophica and Marvinbryantia formatexigens in vitro and in the intestines of gnotobiotic mice harboring a prominent saccharolytic bacterium. To do so, we developed a generally applicable method for multiplex sequencing of expressed microbial mRNAs, and together with mass spectrometry of metabolites, show that these organisms have distinct patterns of substrate utilization. B. hydrogenotrophica targets aliphatic and aromatic amino acids. It increases the efficiency of fermentation by consuming reducing equivalents, thereby maintaining a high NAD+/NADH ratio and boosting acetate production. In contrast, M. formatexigens consumes oligosaccharides, does not impact the redox state of the gut, and boosts the yield of succinate. These findings have strategic implications for those who wish to manipulate the hydrogen economy of gut microbial communities in ways that modulate energy harvest. 119 Samples consisting of Bacteroides thetaiotaomicron, Marvinbryantia formatexigens, and Blautia hydrogenotrophica cecal and fecal samples. Please see the individual Sample descriptions for more information.