Project description:Background In broilers, heat stress can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat stress-related losses annually. The objective of this study is to characterize the effects of chronic, cyclic heat stress on the transcriptome of a metabolically active organ, the liver. Characterizing the liver transcriptome of heat-stressed broilers will help clarify the effects of heat stress on metabolism. This information will provide a platform for future investigations that further elucidate physiologic responses to heat stress and seek methods to ameliorate the negative impacts of heat. Results Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology, resulted in a total of 138 million, 100 base pair single end reads, yielding 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold change ≥ 2 in response to chronic, cyclic heat stress (mid-point of the last day of a 7-day cyclic heat stress of 7 hours per day), with 27 down-regulated and 13 up-regulated. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes; “Cell Signaling, Molecular Transport, Small Molecule Biochemistry” and “Endocrine System Development and Function, Small Molecule Biochemistry Cell Signaling”. Members of the MAPK signaling pathway and differentially expressed genes that are associated with MAPK-related functions were prominent in the networks. Cellular proliferation and differentiation, inflammationand stress-related signaling, and apoptosis-associated genes were down-regulated in response to heat stress. Genes responsible for inhibiting feed intake and sphingolipidrelated signaling were up-regulated. Genes involved with the regulation of inflammation, stress, thyroid hormone level, and body temperature were both up- and down-regulated. Conclusions Chronic, cyclic heat stress of broilers results in metabolic changes that can be characterized through RNA-seq analysis of the liver transcriptome. The primary affected pathways included cell signaling, molecular transport, endocrine system development and signaling, and small molecule biochemistry. Examination of 2 heat treatments. Four heat stressed liver samples and 4 control liver samples analyzed.
Project description:Transcriptional profiling of the jejunum mucosa with 1.5 fold-change reporter genes in comparing control black-boned chickens under normal temperature (NT) conditon with heat-stress treated black-boned chickens under high temperature (HT) condition. Goal was to determine the differentially expressed genes (DEGs) in co-family black-boned chickens exposure to heat stress based on global chicken gene expression. Two-condition experiment, HT vs. NT Treatment. Biological replicates: 3 control replicates, 3 heat stressed replicates.
Project description:Background In broilers, heat stress can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat stress-related losses annually. The objective of this study is to characterize the effects of chronic, cyclic heat stress on the transcriptome of a metabolically active organ, the liver. Characterizing the liver transcriptome of heat-stressed broilers will help clarify the effects of heat stress on metabolism. This information will provide a platform for future investigations that further elucidate physiologic responses to heat stress and seek methods to ameliorate the negative impacts of heat. Results Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology, resulted in a total of 138 million, 100 base pair single end reads, yielding 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold change ≥ 2 in response to chronic, cyclic heat stress (mid-point of the last day of a 7-day cyclic heat stress of 7 hours per day), with 27 down-regulated and 13 up-regulated. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes; “Cell Signaling, Molecular Transport, Small Molecule Biochemistry” and “Endocrine System Development and Function, Small Molecule Biochemistry Cell Signaling”. Members of the MAPK signaling pathway and differentially expressed genes that are associated with MAPK-related functions were prominent in the networks. Cellular proliferation and differentiation, inflammationand stress-related signaling, and apoptosis-associated genes were down-regulated in response to heat stress. Genes responsible for inhibiting feed intake and sphingolipidrelated signaling were up-regulated. Genes involved with the regulation of inflammation, stress, thyroid hormone level, and body temperature were both up- and down-regulated. Conclusions Chronic, cyclic heat stress of broilers results in metabolic changes that can be characterized through RNA-seq analysis of the liver transcriptome. The primary affected pathways included cell signaling, molecular transport, endocrine system development and signaling, and small molecule biochemistry.
Project description:Individual male broilers (Cobb500; n=16) were allotted to 4 experimental diets containing either no phytogenic feed additives, an essential oil blend, saponin extract or a combination of both phytogenic preparations. Jejunum samples were used for transcriptome profiling.
Project description:The aim of the present study was to investigated the difference of Nrf2-regulated genes in livers between normal and heat-stressed chickens. The CUT&Tag and high-throughput sequencing technologies were used in this experiment. Results showed that 13171838- 15417444 clean reads were obtained in this study. These data suggested that there were many Nrf2- regulated genes in the liver of heat-stressed chicken.
Project description:Here we report a direct tRNA sequencing protocol and software to simultaneously examine the composition and biological activity of naturally occurring microbial communities. Our analysis of mouse gut microbiome with tRNA-seq and 16S ribosomal RNA gene amplicons revealed comparable microbial community structures, and additional physiological insights into the microbiome through tRNA abundance and modifications.
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. To identify heat stress induced genes, we performed RNA-sequencing of rosette leaves from mock-treated, heat-stressed and heat-stressed-recoved plants of both species.