Project description:This data is a case study done in the context of developing methods for assessing the taxonomic composition of microbial communities using metaproteomics. For this study with analyzed phototrophic biomats from two Soda Lakes in the Canadian Rocky Mountains using metaproteomics. For protein identification we generated a metagenome from which we predicted and annotated the protein sequences used to analyze the metaproteomes. The database is available in this PRIDE submission. Lake1 refers to Goodenough Lake (GEM, 51°19'47.64"N 121°38'28.90"W) and Lake2 referes to Last Chance Lake (LCM, 51°19'39.3" N 121°37'59.3"W).
Project description:Gymnocypris przewalskii przewalskii is distributed in Qinghai Lake, the largest inland saltwater lake in China. It is the only Cyprinidae fish in the Qinghai Lake water system and has extremely strong adaptability to the ecological environment with high salinity. G. p. przewalskii originates from the freshwater species Gymnocypris eckloni eckloni in the Yellow River and has a freshwater subspecies, Gymnocypris przewalskii ganzihonensis, distributed in the Ganzi River. Therefore, G. p. przewalskii is considered an ideal material for studying the high salt adaptation of plateau fish. Previous studies have characterized the evolutionary basis of highland adaptation in G. p. przewalskii; however, its adaptability to highly saline aquatic environments remains elusive. In the current study, we performed physiological, histological, genomic and transcriptomic analyses to investigate the phenotypical adaptation of G. p. przewalskii to a high saline environment and the underlying genomic and regulatory bases.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Transcripts of the gill epithelium from three different stocks of Atlantic salmon (Salmo salar) migrating from freshwater river to lake (Saimaa stock, SS), brackish water (Neva stock, NS) or seawater (Teno stock, TS) were compared at three successive developmental stages (parr, smolt and postsmolt) using the 16K GRASP cDNA microarray platform.
Project description:We established simple synthetic microbial communities in a microcosm model system to determine the mechanisms that underlay cross-feeding in microbial methane-consuming communities. Co-occurring strains from Lake Washington sediment were used that are involved in methane consumption, a methanotroph and two non-methanotrophic methylotrophs.
2016-12-26 | GSE85736 | GEO
Project description:Metagenomic data of Chaohu Lake
Project description:MicroRNAs (miRNAs) function as regulators in a broad range of phenotypes. The Oriental River Prawn (Macrobrachium nipponense) is an important commercial species that is widely distributed in freshwater and low-salinity estuarine regions of China and other Asian countries. To date, there are no reports describing M. nipponense miRNAs.
Project description:MicroRNAs (miRNAs) function as regulators in a broad range of phenotypes. The Oriental River Prawn (Macrobrachium nipponense) is an important commercial species that is widely distributed in freshwater and low-salinity estuarine regions of China and other Asian countries. To date, there are no reports describing M. nipponense miRNAs.