Project description:Allergic nasal polyposis is a chronic type 2 inflammatory condition of the upper respiratory tract. We characterize nasal polyps from 5 subjects using single-cell RNA-sequencing, identifying “allergic” tuft cells, characterized by increased expression of the prostaglandin synthetic pathway, in association with a PGE2-activated gene signature.
Project description:Here we investigate the transcriptional landscapes of nasal polyp IgD+ (naïve-like) B cells, nasal polyp ASC, and blood naïve B cells using RNA-seq. These data found that nasal polypP IgD+ naïve-like B cells are activated and similar to nasal polyp ASC and distinct from circulating B cells in the blood.
Project description:Background: Chronic rhinosinusitis with nasal polyposis (CRSwNP) in western countries is characterized by eosinophilia, IgE production and Th2 cytokine expression. Type 2 innate lymphoid cells (ILC2) from polyps produce IL-5 and IL-13 in response to IL-25 and IL-33 although the relevance of this axis to local mucosal T cell responses is unknown. Objective: To investigate the role of the IL-25/IL-33 axis in local mucosal T cell responses in CRSwNP. Methods: Polyp tissue and blood were obtained from patients undergoing nasal polypectomy. Control nasal biopsies and blood were obtained from healthy volunteers. Tissue was cultured in a short-term explant model. T cell surface phenotype/intracellular cytokines were assessed by flow cytometry. TCR Vβ analysis was performed with the immunoSEQ assay. Microarrays were performed for gene expression analysis. Results: Using nasal polyp tissue, numerous IL-25 receptor (IL-17RB) positive polarized Th2 cells were identified which were absent in the healthy nasal mucosa and periphery. IL-17RB+CD4+ polyp Th2 cells co-expressed ST2 (IL-33 receptor) and responded to IL-25 and IL-33 with enhanced IL-5 and IL-13 production. Within IL-17RB+CD4+ T cells several identical TCR Vβ CDR3 sequences were identified in different subjects suggesting clonal expansion driven by a common antigen. Abundant IL-17 producing T cells were observed in healthy nasal mucosal and polyp populations with Th17-related genes the most overexpressed compared to peripheral blood T cells. Conclusion: IL-25 and IL-33 may interact locally with IL-17RB+ST2+ polyp T cells to augment Th2 responses in CRSwNP. A local Th17 response may be the default signature in healthy nasal mucosal immune homeostasis. Three biological replicates. T-helper cells were isolated nasal polyps by explant culture from patients with chronic rhinosinusitis. Cells were then sorted based upon expression of IL17RB by flow cytometric sorting. Resting and activated IL-17RB+ve cells were compared with resting and activated IL-17RB-ve cells.
Project description:Background: Chronic rhinosinusitis with nasal polyposis (CRSwNP) in western countries is characterized by eosinophilia, IgE production and Th2 cytokine expression. Type 2 innate lymphoid cells (ILC2) from polyps produce IL-5 and IL-13 in response to IL-25 and IL-33 although the relevance of this axis to local mucosal T cell responses is unknown. Objective: To investigate the role of the IL-25/IL-33 axis in local mucosal T cell responses in CRSwNP. Methods: Polyp tissue and blood were obtained from patients undergoing nasal polypectomy. Control nasal biopsies and blood were obtained from healthy volunteers. Tissue was cultured in a short-term explant model. T cell surface phenotype/intracellular cytokines were assessed by flow cytometry. TCR Vβ analysis was performed with the immunoSEQ assay. Microarrays were performed for gene expression analysis. Results: Using nasal polyp tissue, numerous IL-25 receptor (IL-17RB) positive polarized Th2 cells were identified which were absent in the healthy nasal mucosa and periphery. IL-17RB+CD4+ polyp Th2 cells co-expressed ST2 (IL-33 receptor) and responded to IL-25 and IL-33 with enhanced IL-5 and IL-13 production. Within IL-17RB+CD4+ T cells several identical TCR Vβ CDR3 sequences were identified in different subjects suggesting clonal expansion driven by a common antigen. Abundant IL-17 producing T cells were observed in healthy nasal mucosal and polyp populations with Th17-related genes the most overexpressed compared to peripheral blood T cells. Conclusion: IL-25 and IL-33 may interact locally with IL-17RB+ST2+ polyp T cells to augment Th2 responses in CRSwNP. A local Th17 response may be the default signature in healthy nasal mucosal immune homeostasis.
Project description:The objective of this study was to determine if nasal transcriptomics could be used to characterize the underlying pathobiology and predict clinical course of patients with pediatric ARDS (PARDS). Subjects meeting consensus PARDS criteria or controls admitted to the Pediatric ICU without lung disease had nasal cytology brushings on days 1, 3, 7 and 14. The gene expression of these brushings was compared to identify subtypes and describe clinical course. Concurrent nasal and bronchial brushings were collected if bronchoscopy was performed. We identified four PARDS subgroups, termed A, B, C, and D. Subgroup B was marked by inflammation and ciliary cell dysfunction. Subgroup D was marked by reduced epithelial stem cell mRNAs without inflammation. Subgroup A had hypo-inflammation and upregulation of pathways important in epithelial cell repair. Subgroup C had increased ciliary cell genes. Control specimens almost entirely clustered with Subgroup C, but one that developed PARDS clustered with Subgroup B and several that developed lung injury clustereced with Subgroups B and A. Over time, Subgroups D and B transitioned to A which transitioned to C. Bronchial and nasal gene expresison were similar.
Project description:Total RNAseq of human healthy control inferior turbinate and glucocorticoid-treated, aspirin-exacerbated respiratory disease (AERD) nasal polyp nasal brushings
Project description:Nasal epithelial brushings were prospectively collected from current and former smokers with pulmonary lesions suspicious for lung cancer in the AEGIS-1 (n=375) and AEGIS-2 (n=130) clinical trials and gene expression profiled using microarrays.
Project description:NSAID-exacerbated respiratory disease (N-ERD) represents a particularly severe endotype of chronic rhinosinusitis with nasal polyps (CRSwNP), which affects around 10-16% of CRSwNP patients. N-ERD is characterized by severe and refractory nasal polyposis, bronchial asthma and intolerance to non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin. Today, the pathogenesis of N-ERD remains incompletely understood and curative treatments are lacking. Using a global transcriptomic approach, we identified local changes between the mucosa of N-ERD nasal polyps and healthy control inferior turbinates. Nasal brushing samples were collected from inferior turbinates of healthy controls and nasal polyps of N-ERD patients under anterior rhinoscopy and stored at -80°C in RNAprotect until RNA isolation and RNAseq.