Project description:We have demonstrated that the etiology of preeclampsia (PE) is associated with protein aggregation, a pathologic paradigm observed in neurodegenerative diseases, and that impaired autophagy contributes to accumulation of protein aggregates. In search of therapeutic options for preeclampsia that inhibit protein aggregation and restore autophagy, we screened several small molecules and identified a class of disaccharides that may prove to be highly efficacious to treat and prevent this severe pregnancy complication. We used the human serum-based humanized PE mouse model to assess the effect of disaccharides on the onset of the syndrome. Mice were i.p. injected with vehicle, disaccharides (2g/kg) at gd9, gd11, and gd14. At gd17, urine was collected, blood pressure was measured, fetal weight was recorded, and placenta was collected and subjected to immunostaining and RNA sequencing. Trehalose and Lactotrehalose inhibited hypoxia-induced accumulation of aggregates and restored impaired autophagy-lysosomal machinery. Disaccharide administration significantly restored normal pregnancy features in PE mice as characterized by normalization of hypertension, proteinuria, growth restriction, and kidney injury. RNA-seq analysis identified some novel genes and pathways that are related to preeclampsia and normalized by disaccharides.
Project description:Background: Long non-coding RNAs (lncRNAs) are an important class of pervasive genes involved in a variety of biological functions. They are aberrantly expressed in many types of diseases. We want to study the lncRNAs profiles in preeclampsia. Preeclampsia has been observed in patients with molar pregnancy where a fetus is absent demonstrating that the placenta is sufficient to cause the condition. So we analyze the lncRNAs profiles in preeclampsia placentas. In this study, we described the lncRNAs profiles in 6 preeclampsia placentas (T) and 5 matched normal pregnancy placentas (N) tissues by microarray. Methodology/Principal Findings: With abundant and varied probes accounting 33,045 LncRNAs in our microarray, the number of lncRNAs that expressed at a certain level could be detected is 28,443. From the data we found there were 738 lncRNAs that differentially expressed (M-bM-^IM-%1.5 fold-change) among preeclampsia placentas compared with matched controls. Up to 18,063 coding transcripts could be detected in placenta samples through 30,215 coding transcripts probes. Coding-non-coding gene co-expression networks (CNC network) were constructed based on the correlation analysis between the differential expressed lncRNAs and mRNAs. According to the GO-Pathway analysis of differential expressed lncRNAs/mRNAs, we choose three lncRNAs to analyze the relationship between lncRNAs and preeclampsia. LOC391533, LOC284100, CEACAMP8 were evaluated by qPCR in 40 of preeclampsia placentas and 40 of controls. The results showed three lncRNAs were aberrantly expressed in preeclampsia placentas compared with controls. Conclusions/Significance: Our study is the first one to determine genome-wide lncRNAs expression patterns in preeclampsia placenta by microarray. The results displayed that clusters of lncRNAs were aberrantly expressed in preeclampsia placenta compared with controls, which revealed that lncRNAs differentially expressed in preeclampsia placenta may exert a partial or key role in preeclampsia development. Misregulation of LOC391533, LOC284100, CEACAMP8 might be associated with preeclampsia. Taken together, this study may provide potential targets for future treatment of preeclampsia and novel insights into preeclampsia biology. LncRNAs/mRNAs profiles in 6 preeclampsia placentas and 5 matched normal pregnancy placentas tissues by microarray using Arraystar v2.0.
Project description:Preeclampsia is a severe placenta-related pregnancy disorder that is generally divided into two subtypes named early-onset preeclampsia (onset <34 weeks of gestation), and lateonset preeclampsia (onset ≥34 weeks of gestation), with distinct pathophysiological origins. Both forms of preeclampsia have been associated with maternal systemic inflammation. However, alterations in the placental immune system have been less well characterized. Here, we studied immunological alterations in early- and late-onset preeclampsia placentas using a targeted expression profile approach. RNA was extracted from snap-frozen placenta samples (healthy n=13, early-onset preeclampsia n=13, and late-onset preeclampsia n=6). The expression of 730 immune-related genes from the Pan Cancer Immune Profiling Panel was measured, and the data were analyzed Q10 in the advanced analysis module of nSolver software (NanoString Technology). The results showed that early-onset preeclampsia placentas displayed reduced expression of complement, and toll-like receptor (TLR) associated genes, specifically TLR1 and TLR4. Mast cells and M2 macrophages were also decreased in early-onset preeclampsia compared to healthy pl acentas. The findings were confirmed by an immunohistochemistry approach using 20 healthy, 19 early-onset preeclampsia, and 10 late-onset preeclampsia placentas. We conclude that the placental innate immune system is altered in early-onset preeclampsia compared to uncomplicated pregnancies. The absence of these alterations in late-onset preeclampsia placentas indicates dissimilar immunological profiles. The study revealed distinct pathophysiological processes in earlyonset and late-onset preeclampsia placentas and imply that a tailored treatment to each subtype is desirable.
Project description:For over a millennium, mind-body interactions have fascinated scientists and doctors for their abilities to shape human perceptions of the external world 1,2. Placebo effects are striking demonstrations of mind-body interactions in which, in the absence of any treatment, a positive expectation of pain relief can reduce or even abolish the experience of pain 3–6. However, despite widespread recognition of the strength of placebo effects and their impact on everyday human experience and clinical trials for new analgesics, the neural circuit basis of the placebo effect has remained a mystery. Here, we show that analgesia from the expectation of pain relief is mediated by a distinct population of rostral anterior cingulate cortex (rACC) neurons that project to the pontine nuclei (rACC→Pn), a pair of brainstem pre-cerebellar nuclei with no established function in pain processing. To do this, we created a behavioral assay that models placebo analgesia by conditioning mice to expect pain relief when moving from a chamber with a heated floor to a second chamber. In this assay, an expectation of pain relief induces an analgesic effect that, like placebo analgesia in humans, is mediated by endogenous opioids. Calcium imaging of neural activity in freely moving mice and electrophysiological studies in cingulate cortical brain slices showed that expectations of pain relief boost the activity of rACC→Pn neurons and potentiate neurotransmission in this pathway. Transcriptomic studies of Pn neurons revealed an unusual abundance of opioid receptors in these cells, further suggesting a role in pain modulation. Selective inhibition of either the rACC→Pn pathway or of opioid-receptor-expressing Pn neurons disrupted placebo analgesia and decreased pain thresholds. Finally, a subset of cerebellar Purkinje cells exhibits activity patterns resembling those of rACC→Pn neurons during pain relief expectation, providing cellular-level evidence of a role for the cerebellum in cognitive pain modulation. Altogether, these findings elucidate longstanding mysteries surrounding the placebo effect by identifying a specific neural pathway that mediates expectation-based pain relief. This discovery opens the possibility of targeting this novel pathway with drugs or neurostimulation methods to treat pain. More broadly, our studies provide a framework for investigating the neural circuit basis of other mind-body interactions beyond those involving pain, and point to prefrontocortical-cerebellar communication as a potential basis for such effects.
Project description:For over a millennium, mind-body interactions have fascinated scientists and doctors for their abilities to shape human perceptions of the external world 1,2. Placebo effects are striking demonstrations of mind-body interactions in which, in the absence of any treatment, a positive expectation of pain relief can reduce or even abolish the experience of pain 3–6. However, despite widespread recognition of the strength of placebo effects and their impact on everyday human experience and clinical trials for new analgesics, the neural circuit basis of the placebo effect has remained a mystery. Here, we show that analgesia from the expectation of pain relief is mediated by a distinct population of rostral anterior cingulate cortex (rACC) neurons that project to the pontine nuclei (rACC→Pn), a pair of brainstem pre-cerebellar nuclei with no established function in pain processing. To do this, we created a behavioral assay that models placebo analgesia by conditioning mice to expect pain relief when moving from a chamber with a heated floor to a second chamber. In this assay, an expectation of pain relief induces an analgesic effect that, like placebo analgesia in humans, is mediated by endogenous opioids. Calcium imaging of neural activity in freely moving mice and electrophysiological studies in cingulate cortical brain slices showed that expectations of pain relief boost the activity of rACC→Pn neurons and potentiate neurotransmission in this pathway. Transcriptomic studies of Pn neurons revealed an unusual abundance of opioid receptors in these cells, further suggesting a role in pain modulation. Selective inhibition of either the rACC→Pn pathway or of opioid-receptor-expressing Pn neurons disrupted placebo analgesia and decreased pain thresholds. Finally, a subset of cerebellar Purkinje cells exhibits activity patterns resembling those of rACC→Pn neurons during pain relief expectation, providing cellular-level evidence of a role for the cerebellum in cognitive pain modulation. Altogether, these findings elucidate longstanding mysteries surrounding the placebo effect by identifying a specific neural pathway that mediates expectation-based pain relief. This discovery opens the possibility of targeting this novel pathway with drugs or neurostimulation methods to treat pain. More broadly, our studies provide a framework for investigating the neural circuit basis of other mind-body interactions beyond those involving pain, and point to prefrontocortical-cerebellar communication as a potential basis for such effects.
Project description:Background: Long non-coding RNAs (lncRNAs) are an important class of pervasive genes involved in a variety of biological functions. They are aberrantly expressed in many types of diseases. We want to study the lncRNAs profiles in preeclampsia. Preeclampsia has been observed in patients with molar pregnancy where a fetus is absent demonstrating that the placenta is sufficient to cause the condition. So we analyze the lncRNAs profiles in preeclampsia placentas. In this study, we described the lncRNAs profiles in 6 preeclampsia placentas (T) and 5 matched normal pregnancy placentas (N) tissues by microarray. Methodology/Principal Findings: With abundant and varied probes accounting 33,045 LncRNAs in our microarray, the number of lncRNAs that expressed at a certain level could be detected is 28,443. From the data we found there were 738 lncRNAs that differentially expressed (≥1.5 fold-change) among preeclampsia placentas compared with matched controls. Up to 18,063 coding transcripts could be detected in placenta samples through 30,215 coding transcripts probes. Coding-non-coding gene co-expression networks (CNC network) were constructed based on the correlation analysis between the differential expressed lncRNAs and mRNAs. According to the GO-Pathway analysis of differential expressed lncRNAs/mRNAs, we choose three lncRNAs to analyze the relationship between lncRNAs and preeclampsia. LOC391533, LOC284100, CEACAMP8 were evaluated by qPCR in 40 of preeclampsia placentas and 40 of controls. The results showed three lncRNAs were aberrantly expressed in preeclampsia placentas compared with controls. Conclusions/Significance: Our study is the first one to determine genome-wide lncRNAs expression patterns in preeclampsia placenta by microarray. The results displayed that clusters of lncRNAs were aberrantly expressed in preeclampsia placenta compared with controls, which revealed that lncRNAs differentially expressed in preeclampsia placenta may exert a partial or key role in preeclampsia development. Misregulation of LOC391533, LOC284100, CEACAMP8 might be associated with preeclampsia. Taken together, this study may provide potential targets for future treatment of preeclampsia and novel insights into preeclampsia biology.
Project description:Transcriptional profiling of sweet corn response to plant density (crowding stress). Determine the extent to which hybrid and environment influences crowding stress response and identify crowding stress transcriptional response in sweet corn
Project description:miRNAs-mediated gene silencing pathway plays vital roles in plant development, abiotic and biotic stress responses. Here, we carried out a high-throughput sequencing approach to identify miRNAs in leaves and flowers of sweet orange. Consequently we identified genome-wide 183 known miRNAs and 38 novel miRNAs. Small RNA sequencing of the leaves and flowers in sweet orange
Project description:Preeclampsia is a heterogeneous and complex disease caused by multiple factors, including heredity and environment. However, the underlying mechanism remains elusive due to diverse races, geography, and other factors. Previous findings have revealed that there is a tendency for preeclampsia to run in families. To define genetic factors associated with preeclampsia, we performed a genome-wide analysis of preeclampsia samples from 10 preeclampsia cases and 10 healthy age- and gravidity-matched normotensive pregnant women. We identified 27 aberrant copy number variations related to preeclampsia, including 22 deletions and 5 duplications. These differential copy number variant regions involved 27 differential genes, including SPATA6L, PPP2R3B, PREX2, IL1RAPL1, OR52N1, OR52N5, CHSY1, DPP6, KRTAP9-7, LPA, NTRK1, BTNL3, TBC1D3F, TBC1D3, LOC440434 , EYA2, APOBEC3A_B, APOBEC3A, APOBEC3B, FHIT, EXT1, PRR14, FBRS, LMF1, MALT1, BCAS1, and MIR4756. These findings suggest that these differential genes may be associated with the pathogenesis of preeclampsia and require further investigation.