Project description:The linkage between nutrition and cancer prevention is an intriguing concept that is gaining widespread support based on epidemiological and animal studies. Multiple mechanisms likely underlie dietary protection against cancer, with effects influenced by target tissue response, cell-cell interactions and developmental context. Given the negative correlation between breast cancer incidence and intake of soy foods by Asian women, and the increasing consumption of soy protein-based formula by infants in the Western world, we have studied soy protein isolate (SPI) used in most infant formula as a paradigm to evaluate diet as a risk factor in a rodent model of mammary cancer. We previously demonstrated that lifetime exposure to dietary SPI reduced the incidence of N-methyl-N-nitrosourea-induced mammary tumors in young adult rats relative to those fed the control diet Casein (CAS). This protection was associated with increased tumor suppressor PTEN and decreased Wnt signaling component expression in mammary epithelial cells at postnatal day (PND) 50 prior to carcinogen insult. To identify early events contributing to mammary tumor suppression by diet, we used Affymetrix RAE230A GeneChips containing 14280 probe sets and the GeneSpring Robust Multi-array program to analyze genomic profiles of mammary glands of prepubertal (PND21) rats lifetime exposed to SPI or CAS.
Project description:Functional microRNA (miRNA) screening for abdominal fat tissue with different dietary vitamin E (VE) levels was performed in broilers.
Project description:The linkage between nutrition and cancer prevention is an intriguing concept that is gaining widespread support based on epidemiological and animal studies. Multiple mechanisms likely underlie dietary protection against cancer, with effects influenced by target tissue response, cell-cell interactions and developmental context. Given the negative correlation between breast cancer incidence and intake of soy foods by Asian women, and the increasing consumption of soy protein-based formula by infants in the Western world, we have studied soy protein isolate (SPI) used in most infant formula as a paradigm to evaluate diet as a risk factor in a rodent model of mammary cancer. We previously demonstrated that lifetime exposure to dietary SPI reduced the incidence of N-methyl-N-nitrosourea-induced mammary tumors in young adult rats relative to those fed the control diet Casein (CAS). This protection was associated with increased tumor suppressor PTEN and decreased Wnt signaling component expression in mammary epithelial cells at postnatal day (PND) 50 prior to carcinogen insult. To identify early events contributing to mammary tumor suppression by diet, we used Affymetrix RAE230A GeneChips containing 14280 probe sets and the GeneSpring Robust Multi-array program to analyze genomic profiles of mammary glands of prepubertal (PND21) rats lifetime exposed to SPI or CAS. Experiment Overall Design: Female SD rats are exposed to either casein/soy protein isolate based AIN-93G diet since gestation day 4 till weaning. Whole mammary gland were harvested for the gene analysis by microarray.
Project description:Plant-based foods contain bioactive compounds such as polyphenols that resist digestion and potentially benefit the host through interactions with their gut microbiome. Based on previous observations, we hypothesized thatprobiotic Lactobacillus plantarum interact with cranberry polyphenols and dietary oligosaccharides to synergistically impact its physiology. In this study, L. plantarum ATCC BAA-793 was grown on dietary oligosaccharides including cranberry xyloglucans, fructooligosaccharides, and human milk oligosaccharidesin conjunction with proanthocyanidins (PACs) extracted from cranberry. As a result, L. plantarum exhibits a differential physiological response to cranberry PACs dependent on the carbohydrate source and polyphenol fraction introduced. Of two extracts evaluated, the PAC1 fraction increased growth regardless of oligosaccharide whereas PAC2 positively modulates growth during xyloglucan metabolism. Interestingly, PAC1 enables ATCC BAA-793 to utilize fructooligosaccharides efficiently as it is unable to ferment this substrate ordinarily. Relative to glucose, oligosaccharide metabolism increases the ratio of secreted acetic acid to lactic acid. The PAC2 fraction differentially increases this ratio during cranberry xyloglucan fermentation compared with PAC1. RNA-seq transcriptomics link expression of putative polyphenol degradation genes, polyphenol degradation profiles, and physiological phenotypes.
Project description:The aim of the study was to decipher metabolisms responsible (i) for the peculiar adaptation of L. plantarum during soy juice fermentation and (ii) for the release of aroma compounds, amino and short-chain fatty acid, and metabolites with health-promoting properties in soy yogurt. The strategy was the sequencing and annotation of a strain (L. plantarum CIRM-BIA777, PRJEB77707) able to degrade galacto- oligosaccharides, the sampling of soy yogurt, RNA-seq to identify differentially expressed genes of L. plantarum and corresponding metabolisms throughout the kinetics of fermentation. Acids and volatile compounds were also quantified.
Project description:To increase our knowledge of the effects of Fructo oligosaccharides (FOS) on the intestinal barrier function in rats, a controlled rat infection study was performed. Two groups of rats were adapted to a diet with or without FOS. mRNA was collected from the mucosa of the colon and changes in gene expression were assessed using an agilent rat whole genome microarray (G4131A Agilent Technologies). Results indicate that dietary FOS influences energy metabolism, which will most likely play a role in the effects of FOS on the intestinal barrier. Experiment Overall Design: In the present study, large-scale gene expression analysis was performed to reveal mechanistic details of FOS induced gene expression in vivo in the colon mucosa. Wistar rats were adapted to diets with or without FOS for 14 days. RNA was isolated from colonic mucosal scrapings. Agilent rat whole genome microarray containing 44290 60-mer spots, were used to study FOS induced gene expression changes in order to better understand the FOS induced effects on the intestinal barrier of rats.
Project description:An experiment was conducted to investigate the effects of dietary inclusion of rye, a model ingredient to increase gut viscosity, between 14 and 28 days of age on immune competence related parameters and performance of broiler. A total number of 960 one-day-old male Ross 308 chicks were weighed and randomly allocated to 24 pens (40 birds per pen), and the birds in every 8 replicate pens were assigned to one of three experimental diets including graded levels, 0%, 5%, and 10% of rye. Tested immune competence related parameters were composition of the intestinal microbiota, genes expression in gut tissue, and gut morphology. The inclusion of 5% or 10% rye in the diet (d14-28) resulted in decreased performance and litter quality, but in increased villus height and crypt depth in the small intestine (jejunum) of the broilers. Relative bursa and spleen weights were not affected by dietary inclusion of rye. In the jejunum, no effects on number and size of goblet cells, and only trends on microbiota composition in the digesta were observed. Dietary inclusion of rye affected expression of genes involved in cell cycle processes of the jejunal enterocyte cells, thereby influencing cell growth, cell differentiation and cell survival, which in turn were consistent with the observed differences in the morphology of the gut wall. In addition, providing rye-rich diets to broilers affected the complement and coagulation pathways, which are parts of the innate immune system. These pathways are involved in eradicating invasive pathogens. Overall, it can be concluded that inclusion of 5% or 10% rye to the grower diet of broilers had limited effects on performance. Ileal gut morphology, microbiota composition of jejunal digesta, and gene expression profiles of jejunal tissue, however, were affected by dietary rye inclusion level, indicating that rye supplementation to broiler diets might affect immune competence of the birds.
Project description:The role of diet in the prevention of breast cancer is widely accepted, yet little is known on how early dietary effects mitigate adult cancer risk. Soy consumption is associated with reduced breast cancer risk in women, an effect largely attributed to the soy isoflavone genistein (GEN). We previously showed lower chemically-induced mammary tumor incidence in young adult rats with lifetime dietary intake of soy protein isolate (SPI), a highly refined soy product in infant formula, than in those fed the control diet Casein (CAS). To gain insight into signaling pathways underlying dietary tumor protection, we performed genome-wide expression profiling of mammary epithelial cells from young adult rats lifetime fed CAS, SPI, or supplemental GEN-based diets. We identified mammary epithelial genes regulated by SPI (79 total) and GEN (99 total) using Affymetrix rat 230A GeneChip arrays and found minimal overlap in gene expression patterns. We showed that the regulated transcripts functionally cluster in biochemical pathways involving metabolism, immune response, signal transduction, and ion transport. We confirmed the differential expression of Wnt (Wnt5a, Sfrp2) and Notch (Notch2, Hes1) signaling components by SPI and/or GEN using QPCR. Wnt pathway inhibition by GEN was supported by lower Cyclin D1 immunoreactivity in mammary ductal epithelium of GEN relative to CAS and SPI, despite their comparable levels of membrane-localized E-cadherin and β-catenin. Identification of distinct GEN and SPI responsive genes in mammary epithelial cells may define early events contributing to tumor protection by diet relevant to the prevention of breast and other types of cancer. Experiment Overall Design: Female Sprague-Dawley rats, fed one of the three purified diets, were studied at postnatal day50. Total RNA( each RNA samples were extracted from #4 mammary gland from two animals under the same diet group) purified from non-tumor tissue within the proximal half of each colon, was used to prepare biotinylated probes, which were hybridized to Affymetrix RAE230 rat microarrays.