Project description:Co-occurrence of antibiotic, biocide, and heavy metal resistance genes on bacteria from metal and radionuclide contaminated soils at the Savannah River Site
Project description:Cupriavidus metallidurans CH34 is a metal resistant beta-proteobacterium. The genome of this bacterium contain many genes involved in heavy metal resistance. Gene expression of C. metallidurans was studied after the addition of of Zn(II), Cd(II), Cu(II), Ni(II), Pb(II), Hg(II) or Co(II). Keywords: Heavy metal stress response
Project description:Background: The high number of heavy metal resistance genes in the soil bacterium Cupriavidus metallidurans CH34 makes it an interesting model organism to study microbial responses to heavy metals. Results: In this study the transcriptional response of this bacterium was measured after challenging it to a wide range of sub-lethal concentrations of various essential or toxic metals. Considering the global transcriptional responses for each challenge as well as by identifying the overlap in upregulated genes between different metal responses, the sixteen metals could be clustered in three different groups. Additionally, next to the assessment of the transcriptional response of already known metal resistance genes, new metal response gene clusters were identified. The majority of the metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex cross-talk at transcriptional level between the different metal responses. The highly redundant nature of these metal resistant regions – illustrated by the large number of paralogous genes – combined with the phylogenetic distribution of these metal response regions within evolutionary related and other metal resistant bacteria, provides important insights on the recent evolution of this naturally soil dwelling bacterium towards a highly metal-resistant strain found in harsh and anthropogenic environments. Conclusions: The metal-resistant soil bacterium Cupriavidus metallidurans CH34 displays myriads of gene expression patterns when exposed to a wide range of heavy metals at non-lethal concentrations. The interplay between the different gene expression clusters points towards a complex cross-regulated regulatory network governing heavy metal resistance in C. metallidurans CH34. Keywords: Cupriavidus metallidurans CH34, transcriptional regulation, heavy metal resistance Two-condition experiments. Comparing samples after induction with heavy metals versus non-induced samples. Biological duplicate or triplicate. Each array contains 3 or 4 technical replicates.
Project description:Cupriavidus metallidurans CH34 is a metal resistant beta-proteobacterium. The genome of this bacterium contain many genes involved in heavy metal resistance. Gene expression of C. metallidurans was studied after the addition of of Zn(II), Cd(II), Cu(II), Ni(II), Pb(II), Hg(II) or Co(II). Keywords: Heavy metal stress response Cultures of C. metallidurans CH34 were grown at 30°C until OD reached 0.6 (mid- exponential phase cultures). Heavy metals (0.8 mM of Zn(II), 0.5 mM of Cd(II), 0.1 mM of Cu(II), 0.6 mM of Ni(II), 0.4 mM of Pb(II), 5 uM of Hg(II) and 0.5 mM of Co(II)) were added to the culture for 30 minutes induction time. Total RNA was extracted, reverse-transcribed and labeled with Cy3-dCTP for the control (without metal) and with Cy5-dCTP for each conditions (challenged with one metal). Labeled cDNA were (control and one condition) added to a spotted slide for overnight hybridization at 42°C. Slides were scanned with a laser at 532 and 635 nm.
Project description:96 BdbZIPs responding to 14 stresses were screened using qPCR. All samples were repeated with 3 times and GAPDH was regarded as house keeping gene. The stresses included heavy metal treatments, environmental factors and phytohormones
Project description:MAPK cascades genes responding to 14 stresses were screened using qPCR. All samples were repeated with 3 times and ACTIN was regarded as house keeping gene. The stresses included heavy metal treatments, environmental factors, phytohormones and biotic treatments.
Project description:Background: The high number of heavy metal resistance genes in the soil bacterium Cupriavidus metallidurans CH34 makes it an interesting model organism to study microbial responses to heavy metals. Results: In this study the transcriptional response of this bacterium was measured after challenging it to a wide range of sub-lethal concentrations of various essential or toxic metals. Considering the global transcriptional responses for each challenge as well as by identifying the overlap in upregulated genes between different metal responses, the sixteen metals could be clustered in three different groups. Additionally, next to the assessment of the transcriptional response of already known metal resistance genes, new metal response gene clusters were identified. The majority of the metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex cross-talk at transcriptional level between the different metal responses. The highly redundant nature of these metal resistant regions – illustrated by the large number of paralogous genes – combined with the phylogenetic distribution of these metal response regions within evolutionary related and other metal resistant bacteria, provides important insights on the recent evolution of this naturally soil dwelling bacterium towards a highly metal-resistant strain found in harsh and anthropogenic environments. Conclusions: The metal-resistant soil bacterium Cupriavidus metallidurans CH34 displays myriads of gene expression patterns when exposed to a wide range of heavy metals at non-lethal concentrations. The interplay between the different gene expression clusters points towards a complex cross-regulated regulatory network governing heavy metal resistance in C. metallidurans CH34. Keywords: Cupriavidus metallidurans CH34, transcriptional regulation, heavy metal resistance
Project description:MAP kinases are integral to the mechanisms by which cells respond to a wide variety of environmental stresses. In Caenorhabditis elegans, the KGB-1 JNK signaling pathway regulates the response to heavy metal stress. The deletion mutants of this cascade show hypersensitivity to heavy metals like copper or cadmium. However, factors that function downstream of KGB-1 pathway are not well characterized. To understand how the KGB-1 pathway modulates gene activity and to define the physiological processes in which the heavy metal stress response may be involved, we used microarray to examine gene expression changes in wild-type and kgb-1 mutant animals subjected to heavy metal stress.
2012-12-05 | GSE42703 | GEO
Project description:Antibiotic resistance bacteria in environmental samples
Project description:Esophageal squamous cell carcinoma (ESCC) is an aggressive cancer with one of the highest world incidences in the Eastern Cape region of South Africa. Several genome wide studies have been performed on ESCC cohorts from Asian countries, North America, Malawi and other parts of the world but none has been conducted on ESCC tumors from South Africa to date, where the molecular pathology and etiology of this disease remains unclear. We report here tumor associated copy number changes observed in 51 ESCC patients’ samples from the Eastern Cape province of South Africa. We extracted tumor DNA from 51 archived ESCC specimens and interrogated tumor associated DNA copy number changes using Affymetrix® 500K SNP array technology. The Genomic Identification of Significant Targets in Cancer (GISTIC) algorithm was applied to identify significant focal regions of gains and losses. Gains of the top recurrent cancer genes were validated by fluorescence in situ hybridization and their protein expression assessed by immunohistochemistry. Twenty-three significant focal gains were identified across samples. Gains involving the CCND1, MYC, EGFR and JAG1 loci recapitulated those described in studies on Asian and Malawian cohorts. The two most significant gains involved the chromosomal sub-bands 3q28, encompassing the TPRG1 gene and 11q13.3 including the CTTN, PPFIA1and SHANK2 genes. There was no significant homozygous loss and the most recurrent hemizygous deletion involved the B3GAT1 gene on chromosome11q25. Focal gains on 11q13.3 in 37% of cases (19/51), consistently involved CTTN and SHANK2 genes. Twelve of these cases (23,5%), had a broader region of gain that also included the CCND1, FGF19, FGF4 and FGF3 genes. SHANK2 and CTTN are co-amplified in several cancers, these proteins interact functionally together and are involved in cell motility. Immunohistochemistry confirmed both Shank2 (79%) and cortactin (69%) protein overexpression in samples with gains of these genes. In contrast, cyclin D1 (65%) was moderately expressed in samples with CCND1 DNA gain. This study reports copy number changes in a South African ESCC cohort and highlights similarities and differences with cohorts from Asia and Malawi. Our results strongly suggest a role for CTTN and SHANK2 in the pathogenesis of ESCC in South Africa.