Project description:We describe the isolation of sufficient Brucella abortus RNA from primary host cell environment using modified reported methods for RNA-seq analysis, and simultaneously characterize the transcriptional profiles of intracellular B. abortus and bone marrow-derived macrophages (BMM) from BALB/c mice at 24 h (replicative phase) post-infection.
Project description:Brucella dynamically engage macrophages while trafficking to an intracellular replicative niche as macrophages, the first line of innate host defense, attempt to eliminate organisms. Brucella melitensis, B. neotomae, and B. ovis are highly homologous, yet exhibit a range of host pathogenicity and specificity. RAW 264.7 macrophages infected with B. melitensis, and B. ovis exhibit divergent patterns of bacterial persistence and clearance; conversely, B. melitensis and B. neotomae exhibit similar patterns of infection. Evaluating early macrophage interaction with Brucella spp. allows discovery of host entry and intracellular translocation mechanisms, rather than bacterial replication. Microarray analysis of macrophage transcript levels following a 4 hr Brucella spp. infection revealed 130 probe sets altered compared to uninfected macrophages; specifically, 72 probe sets were increased and 58 probe sets were decreased with any Brucella spp. Interestingly, much of the inflammatory response was not regulated by the number of Brucella gaining intracellular entry, as macrophage transcript levels were often equivalent among B. melitensis, B. ovis, and B. neotomae infections. An additional 33 probe sets were identified with altered macrophage transcript levels among Brucella spp. infections that may correlate with species specific host defenses and intracellular survival. Gene ontological categorization unveiled genes altered among species are involved in cell growth and maintenance, response to external stimuli, transcription regulation, transporter activity, endopeptidase inhibitor activity and G-protein mediated signaling. Host transcript profiles provide a foundation to understand variations in Brucella spp. infections, while structure of the macrophage response and intracellular niche of Brucella spp. will be revealed through piecewise consideration of host signaling pathways. Keywords: Macrophage, intracellular pathogen, Brucella melitensis, Brucella neotomae, Brucella ovis, inflammatory immune response, species specificity
Project description:Using Solexa/Illumina's digital gene expression (DGE) system, a tag-based transcriptome sequencing method, we investigated the kinetic transcriptional profile of gene expression in macrophages infected with Brucella melitensis strain 16M. A key aspect of Brucella virulence is their ability to proliferate within professional and nonprofessional phagocytic host cells, thereby successfully bypassing the bactericidal effects of phagocytes. Their virulence and chronic infections are thought to be due to their ability to avoid the killing mechanisms within host cells. Defining the interaction between a host cell and Brucella is crucial to understanding the infectious process. Most researchers have studied the pathogens, but the host plays a very important role during infections. To date, relatively few host factors have been shown important in Brucella infections. However, little is known about the host networks that mediate infection. The objective of the study is to analyze the genes and cellular components related to the innate immunity response to determine the mechanisms through which Brucella avoids the host innate immunity. A total of 3576 and 3962 genes that are differentially expressed between 0 and 4 h and between 0 and 24 h were identified. The identified genes are related to immune processes, signal transduction, inflammation, apoptosis, cell membrane, transcriptional regulation, and intracellular trafficking. Our data have added to the current understanding of different host gene expressions during different infection phases by Brucella spp.
Project description:In this study we report that B. melitensis at the late logarithmic phase of growth are more invasive for HeLa cells than at mid logarithmic or stationary growth phases. Microarray analysis of B. melitensis gene expression identified 414 up- and 40 down-regulated genes in late-log growth phase compared to the stationary growth phase. The vast majority of the up-regulated genes in late-log cultures were those associated with DNA replication, transcription and translation, intermediate metabolism, energy production and conversion, membrane transport and cell envelope, biogenesis and outer membrane, while the down-regulated genes were distributed among several functional categories. This first Brucella global gene expression study provides novel information on growth phase-specific gene regulation important not only for understanding Brucella physiology but also the initial molecular interactions between Brucella and its host. Keywords: Comparison bacterial growth phase normalized to genomic DNA There are two kind of samples consisting of RNA isolated from Brucella melitensis grown logarithmically or at stationary phase. There are four biological replicates of each sample. Every Brucella melitensis open reading frame was printed in triplicate on each microarray, thereby providing three technical replicates for each biological replicates. Each replicate was normalized against labeled Brucella melitensis genomic DNA.
Project description:Using Solexa/Illumina's digital gene expression (DGE) system, a tag-based transcriptome sequencing method, we investigated the kinetic transcriptional profile of gene expression in macrophages infected with Brucella melitensis strain 16M. A key aspect of Brucella virulence is their ability to proliferate within professional and nonprofessional phagocytic host cells, thereby successfully bypassing the bactericidal effects of phagocytes. Their virulence and chronic infections are thought to be due to their ability to avoid the killing mechanisms within host cells. Defining the interaction between a host cell and Brucella is crucial to understanding the infectious process. Most researchers have studied the pathogens, but the host plays a very important role during infections. To date, relatively few host factors have been shown important in Brucella infections. However, little is known about the host networks that mediate infection. The objective of the study is to analyze the genes and cellular components related to the innate immunity response to determine the mechanisms through which Brucella avoids the host innate immunity. A total of 3576 and 3962 genes that are differentially expressed between 0 and 4 h and between 0 and 24 h were identified. The identified genes are related to immune processes, signal transduction, inflammation, apoptosis, cell membrane, transcriptional regulation, and intracellular trafficking. Our data have added to the current understanding of different host gene expressions during different infection phases by Brucella spp. The RAW264.7 cells were seeded into 24-well plates at 5-105 cells/well, incubated in 5% CO2 at 37 M-BM-0C for 24 h, and then infected with Brucella at a multiplicity of infection of 200. To synchronize the infection, the infected plates were centrifuged at 200 ug for 5 min at room temperature and then incubated at 37 M-BM-0C for 20 minutes. The infected cell monolayers were washed three times with PBS, overlaid with 0.5 ml of DMEM containing 100 mg/ml of ampicillin and 50 mg/ml of kanamycin at 37 M-BM-0C for 0, 4, and 24 h. At the end of the incubation period, the culture medium was removed and centrifuged at 1500 rpm for 15 min. The cell pellet and adherent cells were resuspended in TRIzol. Total RNA were extracted from the cells at 0, 4 and 24 h post infection.
Project description:The virB operon, encoding a Type IV secretion system (T4SS), is essential for intracellular survival and persistent infection of Brucella spp. To better understand the role of the T4SS in evading host defense mechanisms and establishing chronic infection, we compared transcriptional profiles of the host response to infection with wild type Brucella strains and strains that fail to express the virB genes. Analysis of host gene expression profiles three days after inoculation with wild type Brucella strains revealed an inflammatory response dominated by interferon-induced genes. This analysis found that not only the type II but also type I interferon pathway was elicited by Brucella infection. Real time RT-PCR showed that a group of genes from these pathways was induced by day 3 post-infection and declined to baseline levels by day 7. In contrast, neither of the two virB mutant strains elicited expression of interferon-induced genes, demonstrating that the T4SS was required to trigger an inflammatory response early during infection. Keywords: analysis of transcriptional responses induced by infection
Project description:In this study we report that B. melitensis at the late logarithmic phase of growth are more invasive for HeLa cells than at mid logarithmic or stationary growth phases. Microarray analysis of B. melitensis gene expression identified 414 up- and 40 down-regulated genes in late-log growth phase compared to the stationary growth phase. The vast majority of the up-regulated genes in late-log cultures were those associated with DNA replication, transcription and translation, intermediate metabolism, energy production and conversion, membrane transport and cell envelope, biogenesis and outer membrane, while the down-regulated genes were distributed among several functional categories. This first Brucella global gene expression study provides novel information on growth phase-specific gene regulation important not only for understanding Brucella physiology but also the initial molecular interactions between Brucella and its host. Keywords: Comparison bacterial growth phase normalized to genomic DNA
Project description:Identification of host responses at the gene transcription level provides a molecular profile of the events that occur following infection. Brucella abortus is a facultative intracellular pathogen of macrophages that induces chronic infection in humans and domestic animals. Using microarray technology, the response of macrophages 4 hours following B. abortus infection was analyzed to identify early intracellular infection events that occur in macrophages. Of the more than 6,000 genes, we identified over 140 genes that were reproducibly differentially transcribed. First, an increase in the transcription of a number of pro-inflammatory cytokines and chemokines, such as TNF-α, IL-1β, IL-1α, and members of the SCY family of proteins, was evident that may constitute a general host recruitment of antibacterial defenses. Alternatively, Brucella may subvert newly arriving macrophages for additional intracellular infection. Second, transcription of receptors and cytokines associated with antigen presentation, e.g., MHC class II and IL-12p40, were not evident at this 4 hour period of infection. Third, Brucella inhibited transcription of various host genes involved in apoptosis, cell cycling, and intracellular vesicular trafficking. Identification of macrophage genes whose transcription was inhibited suggests that Brucella utilizes specific mechanisms to target certain cell pathways. In conclusion, these data suggest that B. abortus can alter macrophage pathways to recruit additional macrophages for future infection while simultaneously inhibiting apoptosis and innate immune mechanisms within the macrophage permitting intracellular survival of the bacterium. These results provide insights into the pathogenic strategies used by Brucella to survive long-term within a hostile environment. Keywords: Macrophage, intracellular pathogen, Brucella abortus, inflammatory immune response
Project description:Many pathogenic bacteria use a regulatory process termed Quorum Sensing (QS) to produce and detect small diffusible molecules to synchronize gene expression within a population. In Gram-negative bacteria, the detection and response to these molecules depend on transcriptional regulators belonging to the LuxR family. Such a system have been discovered in the intracellular pathogen Brucella melitensis, a Gram-negative bacteria responsible for brucellosis, a word-wide zoonosis remaining a serious public health concern in endemic countries. Two LuxR-type regulators, VjbR and BabR, have been identified in the genome of this pathogen. The vjbR mutant is highly attenuated in all tested models suggesting a crucial role of QS in the virulence of Brucella. This attenuation is at least due to the involvement of VjbR in the activation of the virB operon coding for a type four secretion system essential for Brucella to reach its intracellular replication compartment. At present, no function has been attributed to BabR. To assess the role of both Brucella QS-regulators, we performed in tandem comparative transcriptomic and proteomic analyses of vjbR and babR mutants. These experiments revealed that 10% of Brucella genome is regulated through those regulators, revealing that QS is a global regulatory system in this intracellular pathogen. The overlapping between BabR and VjbR targets suggest an unexpected cross-talk between these two regulators. Moreover, our results demonstrate that VjbR and BabR regulate many gene and/or proteins involved in stress response, metabolism and virulence. These targets are potentially involved in the adaptation of Brucella to the oxidative, pH and nutritional stresses encountered within the host. These findings highlight the involvement of QS in the virulence of Brucella and led us to suggest that this regulatory system could be implied in the spatial and sequential adaptation of Brucella to the host environment. Keywords: Quorum Sensing, Comparative gene expression, Brucella melitensis