Project description:Mammalian retinal metabolism favors aerobic glycolysis. However, the role of glycolytic metabolism in retinal morphogenesis remains unknown. We report that aerobic glycolysis is necessary for the early stages of retinal development. Taking advantage of an unbiased approach that combines the use of eye organoids and single-cell RNA sequencing, we identify specific glucose transporters and glycolytic genes in retinal progenitors. Next, we determine that the optic vesicle territory of mouse embryos displays elevated levels of glycolytic activity. At the functional level, we show that removal of Glucose transporter 1 and Lactate dehydrogenase A gene activity from developing retinal progenitors arrests eye morphogenesis. Surprisingly, we uncover that lactate-mediated upregulation of key eye-field transcription factors is controlled by the epigenetic modification of histone H3 acetylation through histone deacetylase activity. Our results identify an unexpected bioenergetic independent role of lactate as a signaling molecule necessary for mammalian eye morphogenesis.
Project description:Mammalian retinal metabolism favors aerobic glycolysis. However, the role of glycolytic metabolism in retinal morphogenesis remains unknown. We report that aerobic glycolysis is necessary for the early stages of retinal development. Taking advantage of an unbiased approach that combines the use of eye organoids and single-cell RNA sequencing, we identify specific glucose transporters and glycolytic genes in retinal progenitors. Next, we determine that the optic vesicle territory of mouse embryos displays elevated levels of glycolytic activity. At the functional level, we show that removal of Glucose transporter 1 and Lactate dehydrogenase A gene activity from developing retinal progenitors arrests eye morphogenesis. Surprisingly, we uncover that lactate-mediated upregulation of key eye-field transcription factors is controlled by the epigenetic modification of histone H3 acetylation through histone deacetylase activity. Our results identify an unexpected bioenergetic independent role of lactate as a signaling molecule necessary for mammalian eye morphogenesis.
Project description:Mammalian retinal metabolism favors aerobic glycolysis. However, the role of glycolytic metabolism in retinal morphogenesis remains unknown. We report that aerobic glycolysis is necessary for the early stages of retinal development. Taking advantage of an unbiased approach that combines the use of eye organoids and single-cell RNA sequencing, we identify specific glucose transporters and glycolytic genes in retinal progenitors. Next, we determine that the optic vesicle territory of mouse embryos displays elevated levels of glycolytic activity. At the functional level, we show that removal of Glucose transporter 1 and Lactate dehydrogenase A gene activity from developing retinal progenitors arrests eye morphogenesis. Surprisingly, we uncover that lactate-mediated upregulation of key eye-field transcription factors is controlled by the epigenetic modification of histone H3 acetylation through histone deacetylase activity. Our results identify an unexpected bioenergetic independent role of lactate as a signaling molecule necessary for mammalian eye morphogenesis.
Project description:L. plantarum is known to possess an L-lactate inducible lactate racemase activity (Goffin et al. 2005. J. Bacteriol. 187:6750). In the present study, microarrays were used in order to identify all genes that are up-regulated by L-lactate, but not by a racemic mixture of D- and L-lactate. A mutant of L. plantarum NCIMB8826 deficient for NAD-dependent L-lactate activity (TF101; Ferain et al. 1994. 176:596), and thus producing no L-lactate, was grown in MRS medium at 28°C until mid-exponential phase (OD600nm 0.75). The culture was then divided into 3 sub-cultures. Optically pure sodium L-lactate (200 mM) was added to the first sub-culture (TF101 + L-lac 200 mM). An equimolar mixture of sodium D- and L-lactate (100 mM each) was added to the second sub-culture (TF101 + L/D-lac 200 mM). The third sub-culture was not treated (TF101; reference sample). The three sub-cultures were further incubated at 28°C for 1h30 (a time known to be sufficient for induction of lactate racemase activity by L-lactate). Cells were harvested by centrifugation. Microarray data were used ot identify genes that are specifically induced by L-lactate (comparison of TF101 with TF101 + L-lac 200 mM), but not by DL-lactate (comparison of TF101 with T101 + L/D-lac 200 mM). There are no biological replicates.