Project description:Cupriavidus metallidurans CH34 is a metal resistant beta-proteobacterium. The genome of this bacterium contain many genes involved in heavy metal resistance. Gene expression of C. metallidurans was studied after the addition of of Zn(II), Cd(II), Cu(II), Ni(II), Pb(II), Hg(II) or Co(II). Keywords: Heavy metal stress response
Project description:Background: The high number of heavy metal resistance genes in the soil bacterium Cupriavidus metallidurans CH34 makes it an interesting model organism to study microbial responses to heavy metals. Results: In this study the transcriptional response of this bacterium was measured after challenging it to a wide range of sub-lethal concentrations of various essential or toxic metals. Considering the global transcriptional responses for each challenge as well as by identifying the overlap in upregulated genes between different metal responses, the sixteen metals could be clustered in three different groups. Additionally, next to the assessment of the transcriptional response of already known metal resistance genes, new metal response gene clusters were identified. The majority of the metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex cross-talk at transcriptional level between the different metal responses. The highly redundant nature of these metal resistant regions – illustrated by the large number of paralogous genes – combined with the phylogenetic distribution of these metal response regions within evolutionary related and other metal resistant bacteria, provides important insights on the recent evolution of this naturally soil dwelling bacterium towards a highly metal-resistant strain found in harsh and anthropogenic environments. Conclusions: The metal-resistant soil bacterium Cupriavidus metallidurans CH34 displays myriads of gene expression patterns when exposed to a wide range of heavy metals at non-lethal concentrations. The interplay between the different gene expression clusters points towards a complex cross-regulated regulatory network governing heavy metal resistance in C. metallidurans CH34. Keywords: Cupriavidus metallidurans CH34, transcriptional regulation, heavy metal resistance Two-condition experiments. Comparing samples after induction with heavy metals versus non-induced samples. Biological duplicate or triplicate. Each array contains 3 or 4 technical replicates.
Project description:Background: The high number of heavy metal resistance genes in the soil bacterium Cupriavidus metallidurans CH34 makes it an interesting model organism to study microbial responses to heavy metals. Results: In this study the transcriptional response of this bacterium was measured after challenging it to a wide range of sub-lethal concentrations of various essential or toxic metals. Considering the global transcriptional responses for each challenge as well as by identifying the overlap in upregulated genes between different metal responses, the sixteen metals could be clustered in three different groups. Additionally, next to the assessment of the transcriptional response of already known metal resistance genes, new metal response gene clusters were identified. The majority of the metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex cross-talk at transcriptional level between the different metal responses. The highly redundant nature of these metal resistant regions – illustrated by the large number of paralogous genes – combined with the phylogenetic distribution of these metal response regions within evolutionary related and other metal resistant bacteria, provides important insights on the recent evolution of this naturally soil dwelling bacterium towards a highly metal-resistant strain found in harsh and anthropogenic environments. Conclusions: The metal-resistant soil bacterium Cupriavidus metallidurans CH34 displays myriads of gene expression patterns when exposed to a wide range of heavy metals at non-lethal concentrations. The interplay between the different gene expression clusters points towards a complex cross-regulated regulatory network governing heavy metal resistance in C. metallidurans CH34. Keywords: Cupriavidus metallidurans CH34, transcriptional regulation, heavy metal resistance
Project description:MAP kinases are integral to the mechanisms by which cells respond to a wide variety of environmental stresses. In Caenorhabditis elegans, the KGB-1 JNK signaling pathway regulates the response to heavy metal stress. The deletion mutants of this cascade show hypersensitivity to heavy metals like copper or cadmium. However, factors that function downstream of KGB-1 pathway are not well characterized. To understand how the KGB-1 pathway modulates gene activity and to define the physiological processes in which the heavy metal stress response may be involved, we used microarray to examine gene expression changes in wild-type and kgb-1 mutant animals subjected to heavy metal stress.
Project description:Cupriavidus metallidurans CH34 is a metal resistant beta-proteobacterium. The genome of this bacterium contain many genes involved in heavy metal resistance. Gene expression of C. metallidurans was studied after the addition of of Zn(II), Cd(II), Cu(II), Ni(II), Pb(II), Hg(II) or Co(II). Keywords: Heavy metal stress response Cultures of C. metallidurans CH34 were grown at 30°C until OD reached 0.6 (mid- exponential phase cultures). Heavy metals (0.8 mM of Zn(II), 0.5 mM of Cd(II), 0.1 mM of Cu(II), 0.6 mM of Ni(II), 0.4 mM of Pb(II), 5 uM of Hg(II) and 0.5 mM of Co(II)) were added to the culture for 30 minutes induction time. Total RNA was extracted, reverse-transcribed and labeled with Cy3-dCTP for the control (without metal) and with Cy5-dCTP for each conditions (challenged with one metal). Labeled cDNA were (control and one condition) added to a spotted slide for overnight hybridization at 42°C. Slides were scanned with a laser at 532 and 635 nm.
Project description:Mycobacterium tuberculosis (Mtb) depends on protein secretion systems for intracellular survival and virulence. The major virulence determinant and ESX-1 dependent effector protein EsxA causes tissue damage and necrosis which promotes spread and dissemination of the bacterium. We developed a fibroblast survival assay (FSA) that exploits this phenotype by selecting for molecules that protect host cells from Mtb-induced lysis. Hit compounds identified in this high-throughput screen blocked the secretion of EsxA thus promoting phagosome maturation which led to substantially reduced bacterial burden in activated macrophages. Target identification studies performed on these drugs led to discovery of a benzothiophene containing histidine kinase inhibitor and a benzyloxybenzylidine hydrazine compound affecting mycobacterial metal ion homeostasis which enabled us to reveal zinc stress as a signal for EsxA secretion. Collectively, this novel drug screening approach can help to tackle the mounting problem of antibiotic-resistant mycobacteria by largely extending the target spectrum of small molecule libraries.
Project description:MAP kinases are integral to the mechanisms by which cells respond to a wide variety of environmental stresses. In Caenorhabditis elegans, the KGB-1 JNK signaling pathway regulates the response to heavy metal stress. The deletion mutants of this cascade show hypersensitivity to heavy metals like copper or cadmium. However, factors that function downstream of KGB-1 pathway are not well characterized. To understand how the KGB-1 pathway modulates gene activity and to define the physiological processes in which the heavy metal stress response may be involved, we used microarray to examine gene expression changes in wild-type and kgb-1 mutant animals subjected to heavy metal stress. Adult worms of WT or kgb-1 mutant were incubated with H2O or 1 mM copper sulfate for 1 hour. Total RNA was then prepared using Trizol reagent (Invitrogen), followed by DNase I treatment, phenol/chloroform extraction and ethanol precipitation. (WT_Cu-), (WT_Cu+), (kgb-1_Cu-) and (kgb-1_Cu+) RNAs extraction were hybridized on Affymetrix microarrays.
Project description:Verbena bonariensis is a species with excellent garden plant, good environmental adaptability and great potential for future development.Cadmium has caused serious heavy metal pollution in the soil, which has posed a great threat to plant growth. In this study, Illumina sequencing technology was used to sequence the transcriptome of Verbena bonariensis leaf under normal and Cd stress, respectively. In total, 95,013 transcripts and 63021 genes with an average length of 923 bp and 1,246 bp were constructed from the clean sequence reads, respectively. And 1037 DEGs were found in response to cadmium treatment, of which 10 were selected for qRT-PCR. In conclusion, this study first identified the Verbena bonariensis as a heavy metal tolerant plant and provided the first large-scale transcriptional data set in response to cadmium stress. Our research will help to understand the mechanism of resistance to Cd in the Verbena bonariensis and provide clues for further studies on the relationships between plants and heavy metals in other Verbenaceae plants.
Project description:The mechanisms of heavy metal accumulation in primary producers and the damage and stress response induced by heavy metals is not well understood. We used UHTS to analyze the transcriptomic response of Elodea nuttallii to heavy metal pollution. We exposed shoots of E. nuttallii for 24 h to increasing concentrations of Hg and Cd. Using Illumina RNA-Seq, we have generated over 50 million 54 nt paired end reads and 14 million single end reads, which we used for de novo assembly of the E. nuttallii transcriptome.